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Introduction 

Pascalfs triangle has a seemingly endless list of fascinating properties. 
One such property which has been extensively studied is the fact that the num-
ber of odd entries in the nth row is equal to 2* where t is the number of ones 
in the base two representation of n (see [1], [2], and [3]). 

Generalizations of this property seem surprisingly difficult. For a prime 
modulus, Hexel & Sachs [4] obtain a rather involved expression for the number 
of occurrences of each residue. Explicit formulas are obtained for p = 3 and 
5. In particular, for a prime modulus p, the number of occurrences for a given 
residue in row n depends only on the number of times each digit appears in the 
base p representation of n. However, it is easily seen that composite moduli 
do not satisfy this property. In this article we consider Pascal1s triangle 
modulo 4 and obtain explicit formulas for the number Of occurrences of each 
residue modulo 4. 

Notation and Conventions 

The letters n, j, k, I will denote nonnegative integers. The letter n will 
typically refer to an arbitrary row of Pascalfs triangle. We will need 
detailed information on the base two representation of n. The following 
definitions will be useful. 

Let 
k . k 

n = Yl ^ i 2 ^ where a^ = 0 or 1, and B(ji) = Y ai' 
i= o i=o 

We also define 
c • = 1 if and only if a^ + i = 1 and a^ = 0, where ak + l = 0. 

We then define 
k 

i= 0 

Similarly, we define 
k 

di = (ai+i)(cLi) and D(n) = Y, di' 
i = o 

Clearly, B(n) is the number of "1"; C(n) is the number of "10"; and D(n) is the 
number of "11" blocks, not necessarily disjoint, in the base two representation 
of n. 

For our purposes, 

ln\ = n\ 

is defined for integer values of n and j; further, 

(n.\ = 0 if j < 0 or j > n. 
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We de f ine 
. \ = v i f and only i f f . J = r (mod 4 ) . 

Let N (n) = ( a , b, c) , where Ni(n) = a i s the number of ones , N2(n) = b i s t he 
number of twos, and /l/3 (n) = c i s the number of t h r e e s i n the nth row of P a s c a l ' s 
t r i a n g l e . 

We w i l l make use of s e v e r a l well-known r e s u l t s found in Singmaster [ 5 ] . 

Lemma 1: pe\\( •) i f and only i f the p - a r y s u b t r a c t i o n n - J has e bor rows . 
II \ u I 

Lemma 2: The number of odd binomial coefficients in the nth level of Pascal's 
triangle is 2B(n). 

We begin our work with an easy result which we prove for completeness. 

Lemma 3: N(2k) = (2, 1, 0) when k > I. 

Proof: Clearly 

<2;> • <s>= -
so Nl(2k) > 2. By Lemma 2, 

Nl(2k) + N3(2k) = 2. 

So Nl(2k) = 2 and N3(2k) = 0. Further, for 0 < j < 2k~l, 2k - j will have at 
least two borrows when performed in base two. Thus, 

(2k\ /2k\ 
:(..); hence, (^ = 0. 

Similarly, for 2k~l < j < 2k . Noticing 

\2k-l) = 2> 

we conclude Nz(2k) = 1 . D 

Lemma 4: Let n = 2k + I, where 0 < £ < 2k. 

(i) If £ < j < 2k~l, then ("> 0. 

(ii) If £ < Q < 2k, then ^ = 0 or 2. 

Proof: In case (i) , we must borrow at least twice in subtracting n - j, and in 
case (ii), at least one borrow must take place. 

By Lemmas 3 and 4, it is clear that Pascal's triangle modulo 4 has the fol-
lowing form: 
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The standard identity 

shows that any row in Figure 1 completely determines all subsequent rows. This 
identity and Lemma 3 yield the following recursive relations. 

Part 1: If n = 2k + £, where 0 < £ < 2k~l (see upper dashed line in Fig. 1): 

(i) Q) - <J> for 0 <- J Sti 

(ii) Q) = (j)= 0 for I + 1 < 3 < 2k~1; 

(iii) Q) = ZQ _^-i) for 2k~l < a < 2k~l + I; 

(iv) (") = 0 for 2k~l + I < 3 < 2k; 

(v) Q - (j - zk) for 2k " iK- n-
Part 2: If w = 2k + I, where 2k~l < I < 2k (see lower dashed line in Fig. 1): 

(vi) Q) = <J) for 0 < 3 < 2k~l; 
^Q)=Q+<j-l2^) fori"****; 

/n\ n/ £ (viii) Q = 2{. „ 2fc-i) for £ < j < 2^; 

(x) (*) = (. ^ lk) for 2*"1 + £ < j < n. £ 

All of the expressions above are considered modulo 4. 

We are now in a position to count the number of ones and threes modulo 4. 
Recall that D(n) > 0 if and only if the base two representation of n has a "11" 
block. 

Theorem 5: If D(n) = 0, then Nl(n) = 2s(n) and N3(n) = 0. 
Proof: We use induction on n. The theorem is true for n < 3. Since D(n) = 0, 
we know n = 2k + £5 where £ < 2/c_1 and £(£) = 0. Using (iii) of the recur-
sion, we have 

< 3 > E 2 < * - * 2 * - I > ( m o d 4 ) 

for 2k~l < j < 2k. Thus, there are no threes in this section of the nth row of 
Pascalfs triangle. By (i) and (v), we see 

Q - <J> for * < 2*"1 and Q = <. _ \ k ^ ) for 3 > 2k. 

Thus, N3(n) = 2N3 (£) . But by induction, /l/3(£) = 0. The theorem now follows 
from Lemma 2. D 

Theorem 6: If D(n) > 0, then Nl(n) = tf3(n) = 2s(n)_1o 

Proof: The result is clear for n < 4. 
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Case 1: n = 2k + £, where I < 2k~l. Clearly, £(£) > 0. When considering Q) , 
by the recursion, we need only consider j < I or 2k < j . For 0 < j < £, there 
are as many ones and threes as in row £. By symmetry, there are as many for 
2k < j. Thus, Nl(n) = 2Nl(i) and JV3(n) = 2N3(l), so the result holds by induc-
tion. 

Case 2: n = 2k + A, where 2k""1 < £ < 2k. Let £ = 2k~l + p. Consider the five 
sections of row n: 

A. 0 < J < 2k~l; 

B. 2fe_1 < j < £; 

C. & < j < 2^; 

D. 2k < j < I + 2fc_1; 

E. £ + 2/c_1 < j < £ + 2k = n. 

By symmetry, ,4 = 5* and B = D. In section C, by (viii) , 

5)" 2<v- - W ) 
and there are no ones or threes in C. 

In section A, 

Q)-Q) for0**<2*-l. 
Since we are trying to count the number of times ( •) = 1 or 3, by Lemma 4, we 
need only consider j < r. 

In section B, 

o-o^o-Vo-£\ 

Now, by Lemma 1, (j) and {j-2k~1) a r e both odd or both even. We need only con-
sider the case when they are both odd. Thus, 

2(. _ 2k-l) E 2 (modulo 4). 

Observing x + 2 = 3x if x = 1 or 3 (modulo 4), we have 

0 ^ > , 3 < £ ! .) 0oodulo4). 

Since we are in section B, 2k~l < j < £, and recalling that £ = 2k~l + r, we see 
that 0 < £ - j < r, that is, (i-j) is in section A. 

This implies the number of ones in section A equals the number of threes in 
section B and the number of threes in section A equals the number of ones in 
section B. Hence, there are an equal number of ones and threes in the combined 
sections of A and B; thus, N\(ri) = #3(7-2). The theorem now follows from Lemma 
2. • 

Theorem 7: Nz(n) = C(n)2B{n)~l. 

Proof: Recall that 

(J1.) = 2 if and only if 2 H7!), 
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which occurs if and only if n - J has exactly one borrow in base two. Thus, we 
wish to count the number of j?s such that n - j has exactly one borrow. 
Suppose the borrow occurs from position i + 1 to position i . If 

k k 
n = £ a^ and J = E ^2"> 

i= 0 i= 0 
then a^ + 1 = 1 and a^ = 0, bi + i = 0 and hi = 1. Thus, if C(n) = 0, it follows 
that N2(n) = 0. 

So we assume C(n) > 1. To ensure no other borrow occurs, it must be the 
case that bi = 0 when a^ = 0 for £ * i . When a£ = 1, £ * £ + 1, &£ may equal 0 
or 1. So for each "10" in n!s representation, there are 2s(n)_1 jfs for which 
Q) = 2. Thus, N2(n) = (7(n)2B(n)-1. • 

To summarize, we have 

{2B^nK C{n)2B{n)~l, 0) if D(n) = 0, 

(2s(n)-is (7(n)2s(^)-l5 25(n)-x) if D(n) > 0. 
Recurrences of the type used here are possible for other composite moduli, but 
they become increasingly complex. A complete characterization of the residues 
modulo 6 would be interesting, since 6 is not a prime power. Also, the 
question of general results for arbitrary composite moduli remains open. 
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