PASCAL'S TRIANGLE MODULO 4

Kenneth S. Davis
Albion College, Albion, MI 49224
William A. Webb
Washington State University, Pullman, WA 99164-2930
(Submitted March 1989)

Introduction

Pascal's triangle has a seemingly endless list of fascinating properties. One such property which has been extensively studied is the fact that the number of odd entries in the $n^{\text {th }}$ row is equal to 2^{t} where t is the number of ones in the base two representation of n (see [1], [2], and [3]).

Generalizations of this property seem surprisingly difficult. For a prime modulus, Hexel \& Sachs [4] obtain a rather involved expression for the number of occurrences of each residue. Explicit formulas are obtained for $p=3$ and 5. In particular, for a prime modulus p, the number of occurrences for a given residue in row n depends only on the number of times each digit appears in the base p representation of n. However, it is easily seen that composite moduli do not satisfy this property. In this article we consider Pascal's triangle modulo 4 and obtain explicit formulas for the number of occurrences of each residue modulo 4.

Notation and Conventions

The letters n, j, k, ℓ will denote nonnegative integers. The letter n will typically refer to an arbitrary row of Pascal's triangle. We will need detailed information on the base two representation of n. The following definitions will be useful.

Let

$$
n=\sum_{i=0}^{k} \alpha_{i} 2^{i} \text {, where } \alpha_{i}=0 \text { or } 1 \text {, and } B(n)=\sum_{i=0}^{k} \alpha_{i} .
$$

We also define

$$
c_{i}=1 \text { if and only if } \alpha_{i+1}=1 \text { and } \alpha_{i}=0 \text {, where } \alpha_{k+1}=0
$$

We then define

$$
C(n)=\sum_{i=0}^{k} c_{i}
$$

Similarly, we define

$$
d_{i}=\left(a_{i+1}\right)\left(a_{i}\right) \text { and } D(n)=\sum_{i=0}^{k} d_{i}
$$

Clearly, $B(n)$ is the number of " 1 "; $C(n)$ is the number of " 10 "; and $D(n)$ is the number of "11" blocks, not necessarily disjoint, in the base two representation of n.

For our purposes,

$$
\binom{n}{j}=\frac{n!}{j!(n-j)!}
$$

is defined for integer values of n and j; further,

$$
\binom{n}{j}=0 \text { if } j<0 \text { or } j>n
$$

We define

$$
\left\langle\begin{array}{l}
n \\
j
\end{array}\right\rangle=r \text { if and only if }\binom{n}{j} \equiv r(\bmod 4) .
$$

Let $N(n)=(a, b, c)$, where $N_{1}(n)=a$ is the number of ones, $N_{2}(n)=b$ is the number of twos, and $N_{3}(n)=c$ is the number of threes in the $n^{\text {th }}$ row of Pascal's triangle.

We will make use of several well-known results found in Singmaster [5].
Lemma 1: $p^{e} \|\binom{ n}{j}$ if and only if the p-ary subtraction $n-j$ has e borrows.
Lemma 2: The number of odd binomial coefficients in the $n^{\text {th }}$ level of Pascal's triangle is $2^{B(n)}$.

We begin our work with an easy result which we prove for completeness.
Lemma 3: $N\left(2^{k}\right)=(2,1,0)$ when $k \geq 1$ 。
Proof: Clearly

$$
\left\langle\begin{array}{c}
2^{k} \\
0
\end{array}\right\rangle=\left\langle\begin{array}{l}
2^{k} \\
2^{k}
\end{array}\right\rangle=1
$$

so $N_{1}\left(2^{k}\right) \geq 2$. By Lemma 2 ,

$$
N_{1}\left(2^{k}\right)+N_{3}\left(2^{k}\right)=2
$$

So $N_{1}\left(2^{k}\right)=2$ and $N_{3}\left(2^{k}\right)=0$. Further, for $0<j<2^{k-1}, 2^{k}-j$ will have at least two borrows when performed in base two. Thus,

$$
4 \left\lvert\,\binom{ 2^{k}}{j}\right. ; \text { hence, }\left\langle\begin{array}{c}
2^{k} \\
j
\end{array}\right\rangle=0
$$

Similarly, for $2^{k-1}<j<2^{k}$. Noticing

$$
\left\langle\begin{array}{c}
2^{k} \\
2^{k-1}
\end{array}\right\rangle=2
$$

we conclude $N_{2}\left(2^{k}\right)=1 . \square$
Lemma 4: Let $n=2^{k}+\ell$, where $0<\ell<2^{k}$.
(i) If $\ell<j<2^{k-1}$, then $\left\langle\begin{array}{l}n \\ j\end{array}\right\rangle=0$.
(ii) If $\ell<j<2^{k}$, then $\left\langle\begin{array}{l}n \\ j\end{array}\right\rangle=0$ or 2 .

Proof: In case (i), we must borrow at least twice in subtracting $n-j$, and in case (ii), at least one borrow must take place.

By Lemmas 3 and 4 , it is clear that Pascal's triangle modulo 4 has the following form:

Figure 1

The standard identity

$$
\left\langle\begin{array}{c}
n \\
j-1
\end{array}\right\rangle+\left\langle\begin{array}{l}
n \\
j
\end{array}\right\rangle=\left\langle\begin{array}{c}
n+1 \\
j
\end{array}\right\rangle
$$

shows that any row in Figure 1 completely determines all subsequent rows. This identity and Lemma 3 yield the following recursive relations.
Part 1: If $n=2^{k}+\ell$, where $0 \leq \ell<2^{k-1}$ (see upper dashed line in Fig. 1):

$$
\begin{aligned}
\text { (i) }\left\langle\begin{array}{ll}
n \\
j
\end{array}\right\rangle & =\left\langle\begin{array}{l}
\ell \\
j
\end{array}\right\rangle & & \text { for } 0 \leq j \leq \ell ; \\
\text { (ii) }\left\langle\begin{array}{l}
n \\
j
\end{array}\right\rangle & =\left\langle\begin{array}{l}
\ell \\
j
\end{array}\right\rangle=0 & & \text { for } \ell+1 \leq j<2^{k-1} ; \\
\text { (iii) }\left\langle\begin{array}{l}
n \\
j
\end{array}\right\rangle & =2\left\langle\begin{array}{l}
\ell \\
\left.j-2^{k-1}\right\rangle
\end{array}\right. & & \text { for } 2^{k-1} \leq j \leq 2^{k-1}+\ell ; \\
\text { (iv) }\left\langle\begin{array}{l}
n \\
j
\end{array}\right\rangle & =0 & & \text { for } 2^{k-1}+\ell<j<2^{k} ; \\
\text { (v) }\left\langle\begin{array}{l}
n \\
j
\end{array}\right\rangle & =\left\langle\begin{array}{c}
\ell \\
\left.j-2^{k}\right\rangle
\end{array}\right. & & \text { for } 2^{k} \leq j \leq n .
\end{aligned}
$$

Part 2: If $n=2^{k}+\ell$, where $2^{k-1} \leq \ell<2^{k}$ (see lower dashed line in Fig. 1):

$$
\begin{aligned}
& \text { (vi) }\left\langle\begin{array}{l}
n \\
j
\end{array}\right\rangle=\left\langle\begin{array}{l}
\ell \\
j
\end{array}\right\rangle \quad \text { for } 0 \leq j<2^{k-1} \text {; } \\
& \text { (vii) }\left\langle\begin{array}{l}
n \\
j
\end{array}\right\rangle=\left\langle\begin{array}{l}
\ell \\
j
\end{array}\right\rangle+2\left\langle\begin{array}{c}
\ell \\
\left.j-2^{k-1}\right\rangle
\end{array} \quad \text { for } 2^{k-1} \leq j \leq \ell\right. \text {; } \\
& \text { (viii) }\left\langle\begin{array}{l}
n \\
j
\end{array}\right\rangle=2\left\langle\begin{array}{c}
\ell \\
\left.j-2^{k-1}\right\rangle
\end{array} \quad \text { for } \ell<j<2^{k}\right. \text {; } \\
& \text { (ix) }\left\langle\begin{array}{l}
n \\
j
\end{array}\right\rangle=2\left\langle\begin{array}{c}
\ell \\
j-2^{k-1}
\end{array}\right\rangle+\left\langle\begin{array}{c}
\ell \\
j-2^{k}
\end{array}\right\rangle \text { for } 2^{k} \leq j \leq \ell+2^{k} \\
& \text { (x) }\left\langle\begin{array}{l}
n \\
j
\end{array}\right\rangle=\left\langle\begin{array}{c}
\ell \\
\left.j-2^{k}\right\rangle
\end{array} \quad \text { for } 2^{k-1}+\ell<j \leq n\right. \text {. }
\end{aligned}
$$

All of the expressions above are considered modulo 4.
We are now in a position to count the number of ones and threes modulo 4. Recall that $D(n)>0$ if and only if the base two representation of n has a "11" block.
Theorem 5: If $D(n)=0$, then $N_{1}(n)=2^{B(n)}$ and $N_{3}(n)=0$.
Proof: We use induction on n. The theorem is true for $n \leq 3$. Since $D(n)=0$, we know $n=2^{k}+\ell$, where $\ell<2^{k-1}$ and $D(\ell)=0$. Using (iii) of the recursion, we have

$$
\left\langle\begin{array}{l}
n \\
j
\end{array}\right\rangle \equiv 2\left\langle\begin{array}{c}
\ell \\
\left.j-2^{k-1}\right\rangle
\end{array}(\bmod 4)\right.
$$

for $2^{k-1} \leq j<2^{k}$. Thus, there are no threes in this section of the $n^{\text {th }}$ row of Pascal's triangle. By (i) and (v), we see

$$
\left\langle\begin{array}{l}
n \\
j
\end{array}\right\rangle=\left\langle\begin{array}{l}
\ell \\
j
\end{array}\right\rangle \text { for } j<2^{k-1} \text { and }\left\langle\begin{array}{l}
n \\
j
\end{array}\right\rangle=\left\langle\begin{array}{c}
\ell \\
j-2^{k-1}
\end{array}\right\rangle \text { for } j>2^{k} \text {. }
$$

Thus, $N_{3}(n)=2 N_{3}(\ell)$. But by induction, $N_{3}(\ell)=0$. The theorem now follows from Lemma 2.
Theorem 6: If $D(n)>0$, then $N_{1}(n)=N_{3}(n)=2^{B(n)-1}$.
Proof: The result is clear for $n \leq 4$.

Case 1: $n=2^{k}+\ell$, where $\ell<2^{k-1}$. Clearly, $D(\ell)>0$. When considering $\left\langle\begin{array}{l}n \\ j\end{array}\right\rangle$, by the recursion, we need only consider $j \leq \ell$ or $2^{k} \leq j$. For $0 \leq j \leq \ell$, there are as many ones and threes as in row l. By symmetry, there are as many for $2^{k} \leq j$. Thus, $N_{1}(n)=2 N_{1}(\ell)$ and $N_{3}(n)=2 N_{3}(\ell)$, so the result holds by induction.
Case 2: $n=2^{k}+\ell$, where $2^{k-1} \leq \ell<2^{k}$. Let $\ell=2^{k-1}+r$. Consider the five sections of row n :
A. $0 \leq j<2^{k-1}$;
B. $2^{k-1} \leq j \leq \ell$;
C. $\ell<j<2^{k}$;
D. $2^{k} \leq j \leq \ell+2^{k-1}$;
E. $\quad \ell+2^{k-1}<j \leq \ell+2^{k}=n$.

By symmetry, $A=E$ and $B=D$. In section C, by (viii),

$$
\left\langle\begin{array}{l}
n \\
j
\end{array}\right\rangle=2\left\langle\begin{array}{c}
\ell \\
\left.j-2^{k-1}\right\rangle
\end{array},\right.
$$

and there are no ones or threes in C.
In section A,

$$
\left\langle\begin{array}{l}
n \\
j
\end{array}\right\rangle=\left\langle\begin{array}{l}
l \\
j
\end{array}\right\rangle \text { for } 0 \leq j<2^{k-1}
$$

Since we are trying to count the number of times $\left\langle\begin{array}{l}l \\ j\end{array}\right\rangle=1$ or 3 , by Lemma 4, we need only consider $j \leq r$.

In section B,

$$
\left\langle\begin{array}{l}
n \\
j
\end{array}\right\rangle=\left\langle\begin{array}{c}
\ell \\
j
\end{array}\right\rangle+2\left\langle j-2^{\ell}-1\right\rangle .
$$

Now, by Lemma $1,\left\langle\begin{array}{l}\ell \\ j\end{array}\right.$ and $\left\langle j-2^{k-1}\right\rangle$ are both odd or both even. We need only consider the case when they are both odd. Thus,

$$
2\left\langle j-2^{k-1}\right\rangle \equiv 2 \quad(\text { modulo } 4)
$$

Observing $x+2 \equiv 3 x$ if $x \equiv 1$ or 3 (modulo 4), we have

$$
\left\langle\begin{array}{l}
n \\
j
\end{array}\right\rangle \equiv 3\left\langle\begin{array}{l}
\ell \\
j
\end{array}\right\rangle \equiv 3\left\langle\begin{array}{c}
\ell \\
\ell-j\rangle \quad(\text { modulo 4). }
\end{array}\right.
$$

Since we are in section $B, 2^{k-1} \leq j \leq \ell$, and recalling that $\ell=2^{k-1}+r$, we see that $0 \leq \ell-j \leq r$, that is, $\langle\ell-j\rangle$ is in section A.

This implies the number of ones in section A equals the number of threes in section B and the number of threes in section A equals the number of ones in section B. Hence, there are an equal number of ones and threes in the combined sections of A and B ; thus, $N_{l}(n)=N_{3}(n)$. The theorem now follows from Lemma 2.

Theorem 7: $\quad N_{2}(n)=C(n) 2^{B(n)-1}$.
Proof: Recall that

$$
\left\langle\begin{array}{l}
n \\
j
\end{array}\right\rangle=2 \text { if and only if } 2 \|\binom{ n}{j},
$$

which occurs if and only if $n-j$ has exactly one borrow in base two. Thus, we wish to count the number of j 's such that $n-j$ has exactly one borrow. Suppose the borrow occurs from position $i+1$ to position i. If

$$
n=\sum_{i=0}^{k} a_{i} 2^{i} \quad \text { and } \quad j=\sum_{i=0}^{k} b_{i} 2^{i},
$$

then $a_{i+1}=1$ and $a_{i}=0, b_{i+1}=0$ and $b_{i}=1$. Thus, if $C(n)=0$, it follows that $N_{2}(n)=0$.

So we assume $C(n) \geq 1$. To ensure no other borrow occurs, it must be the case that $b_{\ell}=0$ when $a_{\ell}=0$ for $\ell \neq i$. When $a_{\ell}=1, \ell \neq i+1$, b_{ℓ} may equal 0 or 1. So for each " 10 " in n 's representation, there are $2^{B(n)-1} j^{\prime}$'s for which $\left\langle\begin{array}{l}n \\ j\end{array}\right\rangle=2$. Thus, $N_{2}(n)=C(n) 2^{B(n)-1}$.

To summarize, we have

$$
N(n)= \begin{cases}\left(2^{B(n)}, C(n) 2^{B(n)-1}, 0\right) & \text { if } D(n)=0 \\ \left(2^{B(n)-1}, C(n) 2^{B(n)-1}, 2^{B(n)-1}\right) & \text { if } D(n)>0 .\end{cases}
$$

Recurrences of the type used here are possible for other composite moduli, but they become increasingly complex. A complete characterization of the residues modulo 6 would be interesting, since 6 is not a prime power. Also, the question of general results for arbitrary composite moduli remains open.

References

1. L. Carlitz. "The Number of Binomial Coefficients Divisible by a Fixed Power of a Prime." Rend. Circ. Mat. PaZermo (II) 16 (1967):299-320.
2. N. J. Fine. "Binomial Coefficients Modulo a Prime." Amer. Math. Monthly 54 (1947):589-92.
3. H. Harborth. "Number of Odd Binomial Coefficients." Proc. Amer. Math. Soc. 62 (1977):19-24.
4. E. Hexel \& H. Sachs. "Counting Residues Modulo a Prime in Pascal's Triang1e." Indian J. Math. 20 (1978):91-105.
5. D. Singmaster. "Divisibility of Binomial and Multinomial Coefficients by Primes and Prime Powers." A Collection of Manuscripts Related to the Fibonacei Sequence. Santa Clara, Calif: The Fibonacci Association, 1980, pp. 98113.
