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1. Introduction 

For select real values of p and for real x^9 the expression 

(1) lim x, + (x1 + (x9 + (... + (xk)p ...)P)P)P 

is practically ubiquitous in mathematics. For instance, (1) represents nothing 
more than the old familiar L^=0^^ when p = 1. When p = -1, it becomes a novel 
notation for the continued fraction 

1 
x0 +

 l 
x, + 1 i 

When p = 0, the expression is identically 1 (provided that the terms are not 
all 0). 

Not quite ubiquitous, but certainly not rare, is the case p = 1/2, in which 
(1) becomes 

(2) lim x„ + vx^ + vx2 + /-. . + v/x^9 

a form variously known as an "iterated radical," "infinite radical," "nested 
root," or "continued root." The literature reveals an assortment of problems 
involving (2) but only a smattering of other direct references. Of the few 
treatments of nested square roots as a research topic, one of the sharpest and 
most thorough is a paper by A. Herschfeld from 1935 [4], wherein he refers to 
(2) as a "right infinite radical" and derives necessary and sufficient 
conditions for its convergence. Recently, some of Herschfeld's results have 
been independently rediscovered [10]. 

A mathematical construct which includes infinite series, continued frac-
tions, and infinite nested radicals as special cases ought to merit serious 
investigation. On the other hand, cases of (1) for other powers, for instance 
p = 2, seem likely to produce little more than irritating thickets of nested 
parentheses, and integer x-^ clearly cause rapid divergence. [Herschfeld men-
tions the form (1), calls it a "generalized right infinite radical," notes the 
cases p = 1 and p = -1, states without proof what amounts to a necessary and 
sufficient condition for the convergence of (1) for 0 < p < 1, and drops the 
subject there.] Yet, surprisingly, it turns out that (1) may converge even for 
very large p; even more surprisingly, there is a sense in which the convergence 
gets "better" the larger p grows. 

In this article we gather and derive some basic properties of expression 
(1), especially its necessary and sufficient conditions for convergence. (For 
logistical reasons, we will deal only with positive powers p and nonnegative 
terms x^; negative powers, complex terms, and interconnections between the 
variations represent unmapped territories which appear to be inhabited by 
interesting results.) We note the peculiar fickleness of infinite series in 
this context, and we conclude with a few comments interpreting (1) as a special 
composition of functions. 
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2. Definitions, Notation, and Qualitative Aspects 

Given a sequence {xn\n = 0, 1, 2, ...} of real numbers (called terms), and 
given a real number p, define a sequence {yn} by 

o ) yk - c (P, «*) - *0 + (x i + (x2 + (••• + (xk)p • • • ) p ) p ) p . 
i = 0 

The limit of yk as /c •> °°  will be called a continued (pth) power, denoted by 
C™=0(p> %i) • If the limit exists, the continued power will be said to 
converge to that limit. (We do not insist that the limit be real, although it 
will be in what follows, given the assumption of positive terms and powers.) 
Borrowing from the jargon of continued fractions, C^=Q(p, x^) will be called 
the kth approximant of the continued power. With the intent of both empha-
sizing and streamlining their retrograde associativity, we will make a slight 
deviation from standard notation and write continued powers and their kth 

approximants, respectively, as 

C (p, xt) = xQ +
 p(x, + p(x9 + ...)) 

and 

C (p, xt) = xQ + p(a; + P(... + P(xk) ...))• 
•£ = 0 

Implicit in this notation is the convention p(x) = x?, and the raising of quan-
tities to powers will be effected both ways. For j > 1, we will call 

C(p, x^ = x. + P(xj + l + p(^. + 2 + ...)) 
and 

k 
Cm(p, ^i) = Xj + p(xj+l + p(... + p(xfe) ...)) 

the truncation at Xj of a continued power and of its kth approximant, respec-
tively. If the arguments p and Xi are understood in a given discussion, then 
Ci=J-(p, x^ will be shortened to C-. Note that 

C = xk (k > 0), 

C = xd + ( C J (0 < j < k) . 
In the event that p = l/m, m a positive integer [or, more loosely, for m G (1, 
00) ] , we may use the notation developed in [10]: 

C (p, Xi) = xQ + \/(xl + \/(x2 + </(••• 
i = 0 

and will call such an expression a continued root (dropping the m9 of course, 
when m = 2). 

The contrary associativity of a continued power is at the outset perhaps 
its most prominent and daunting feature. Not only must the evaluation of a 
finite approximant be performed from right to left, but the kth approximant 
cannot in general be obtained as a simple function of the (k - l)st ; that is, 
there is in general no simple recursion formula relating CQ~ to CQ. To mani-
pulators of infinite series and continued fractions, this annoyance is less 
severe than it is to us, because the essentially linear and fractional nature 
of series and continued fractions permits the elimination of nested parenthe-
ses. For most continued powers, however, nonlinearity will subvert or preclude 
such simplification. 
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Since computation of the kth approximant "begins" at x^ and "ends" at XQ, 
one might say that continued powers "end, but never begin" as the number of 
terms increases without bound. This is in stark contrast to most other infi-
nite constructs (borne for the most part by truly iterated processes) which 
"begin, but never end." To have an end, but no beginning, seems rather 
bizarre; perhaps this is because our intuition, abstracted from the natural 
world, prefers infinite processes with finite origins. After all, anyone who 
is born can wish never to die, but what sense can be made of the possibility of 
dying, having never been born? For now, we will accept the informal idea of 
expressions that "end, but never begin" without dwelling on its deeper implica-
tions, lest by sheer grammatical duality the familiar processes that "begin, 
but never end" come to look equally doubtful. 

3. Continued Powers of Constant Terms 

Continued powers turn up in the literature often as continued square roots 
having constant terms, as in the formula (mentioned in [8]) for the golden 
ratio 

<f> = 1 + 5 = /(l + /(l + /(l + / ( . . . 

Such expressions invite consideration of continued powers of the form 

C (p, a) = a + p(a + p(a + ... ) ) . 
i= o 

For a given p > 0, what values of a > 0 (if any) will make this continued power 
converge? 

To answer this question, we conjure up an insight so useful that in one way 
or another it makes possible all of our later results: namely, the order of 
operations can be reversed in a continued power of constant terms. That is, 
the evaluation of a finite approximant may be performed by associating either 
to the right or to the left when all the terms are equal, as the following 
construction demonstrates: 

(4) a = a 

a + p(a) = (a)p + a 

a + p ( . . . + p(a + p(a)) ---) = (--- ((a)p + a)p + . . - ) p + a 

where each side of the last line has the same number of terms. Note that this 
does not work if the terms are not equal. If you index the terms as you add 
them, you will find that neither the left- nor right-hand expressions are 
approximants of a continued power. 

As mentioned in Section 2, associativity in the "wrong" direction is the 
main impediment to the study of continued powers in general. The appeal of the 
present situation lies in the fact that a continued power of constant terms is 
equivalent to a form whose associativity proceeds in the "right" direction, and 
whose convergence can be studied using known techniques. The tool we will make 
most use of is the algorithm known in numerical analysis as "successive 
approximation" or "fixed-point iteration"; for those whom it may benefit, we 
briefly synopsize this algorithm and its properties. In fixed-point iteration, 
a generating function g is defined on an interval I, a starting point WQ is 
chosen in I, and a sequence {w^} is generated by w^ = g(w-^_i) for k = 1, 2, 3, 
... . The sequence {w^} converges to an (attracting) fixed point A in J [with 
the property that g(X) = A ] , provided that g and I satisfy certain conditions. 
For our purposes the following conditions due to Tricomi (mentioned in [3]) 
will suffice, although others are known (cf. [5]): 
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( i ) g(x) must be continuous on the (closed, half-open, or open) in te rva l 
i; 

(ii) there must exist a number X G I such that g(X) - X; 
(iii) \g(x) - X\ < \x - X\ for all x G I, x * X. 
Despite notational vagaries, it is no secret ([7], [9]) that, for p = 1/2, 

the expression (((a)p + a) p + a) p + ••• is simply an "unabbreviated" fixed-point 
algorithm generated by g(x) = ga(x) = xp + a at the starting point x = 0. 
Extending this interpretation to the general case, we invoke the identity (4) 
to claim that the convergence of C™=0(p, a) depends only on ga (x) and a suit-
able interval I containing the starting point x = 0 and the fixed point X . In 
fact, CQ converges just when g and I conform to conditions (i) , (ii)5 and 
(iii) above. With this strategy in hand we obtain 

Theorem 1: The continued pth power with nonnegative constant terms xn = a con-
verges if and only if 

a > 0 for 0 < p < 1; 
a = 0 for p = 1; and 
0 < -a < R fo r p > 1 

whe" _ rJEUEH. 
The set [0, °°) will be called the interval of convergence for a continued 

pth power, 0 < p < 1. Likewise {0} and [0, R] will be the intervals of conver-
gence for p = 1 and p > 1, respectively. 

Proof: The case p = 1 is trivial, since the only value of a for which Z^=0a is 
finite is a = 0, and R = 0 when p = 1. Indeed, C™=0(p, a) converges whenever 
a = 0 for any p > 0. 

For ga(x) = x^ + a and p > 0, continuity is not an issue for x and a in R+. 
Condition (i) is satisfied by any positive interval. 

Condition (iii) is fulfilled for 0 < p < 1 and p > 1, since in both cases 
the function ga(x) = x? + a is strictly increasing, and it is easily shown that 
either X > ga(x) > x or X < ga(x) < x for x * X in the interval(s) I which per-
tain. 

The remainder of the proof, then, involves determining those intervals I 
and establishing the existence of X G I for positive p ^ 1. Because the func-
tions involved are very well-behaved, we offer remarks about their graphs 
rather than detailed derivations of their properties. Essentially, the problem 
is to determine how far a power function can be vertically translated so that 
it always possesses an attracting fixed point. 

0 < p < 1. The curve y = ga (x) = x? + a (typified by y = fx + a) is 
strictly increasing, concave downward, and vertically translated +a units. For 
a > 0, take I = [0, °°). From a graph, it is clear that y = ga(x) intersects 
y = x exactly once in J, at the point x = X = ga (x) . (For a treatment of this 
case when p = 1/2 and a is complex, see [11].) 

p > 1. Here the curve y = ga(x) is exemplified by y = x2 + a; it is con-
cave upward, strictly increasing, and elevated a units. There is a point a = R 
at which y - ga(x) is tangent to y = x; for a > R, the two curves do not inter-
sect; hence, no X = ga(X) exist. 

When a = R, A is the point of tangency of y = gR(x) and y = x. The deriva-
tive of gR{x) is 1 at x = X, whereby X = X = (l/p)l/(P~lh Then, from X = gR(\) 
= Xp + R and X = J, we find 

*•'- "-{if1-®*- (*r* -»- '-^T1-
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This form for R was chosen to foreshadow a recurrent theme in the field of con-
tinued powers, namely the persistent appearance of expressions of the form 
AA/BB. At any rate, for a = R, take I = [0, X] . 

Finally, when 0 < a < R, y = ga(x) intersects y = x at two points lying on 
either side of the point X. Take I = [0, X] , so that the single intersection 
point less than X is the point X E I satisfying condition (ii) . We have shown 
that ga(x) generates convergent fixed-point algorithms over I = [0, X] for 
0 < a < R9 which ends the proof. 

Theorem 1 reveals that, for instance 

C (2, a) = a + 2(a + 2(a + ...)) 
i=0 

converges for any a e [0, 1/4]; the proof shows that 

?„ (2- i ) i= 0 

One may show that as p -> °°  the point R -> 1, hence the interval of convergence 
grows larger as p increases beyond 1. In this context, we can reasonably say 
that the convergence.of a continued pth power gets "better" as p grows large, 
and is "worst" for the famous case p = 1, namely infinite series. 

4. Continued Powers of Arbitrary Terms; 0 < p < 1 

The first discussion of the convergence of the continued square root 

C (|, %i) = ̂ 0 + Axl + /(a?2 + /(..-

appears to have been made in 1916 by Polya & Szego [8], who showed that it con-
verges or diverges accordingly as 

log log xn 
lim sup-

n •> c n 
is less than or greater than log 2. This result was encompassed by a theorem 
of Herschfeld, which gives a necessary and sufficient condition for the conver-
gence of a continued square root and which easily generalizes to the main 
theorem of this section. 

Theorem 2: For 0 < p < 1, the continued pth power with terms xn > 0 converges 
if and only if ix^n} is bounded. 

This follows simply by substitution of l/pth roots for square roots in 
Herschfeld's proof of the case p = 1/2. In lieu of a proof by plagiarism, we 
merely convey the proof's salient features; and to that end, let us take a 
moment to establish three useful properties of approximants and their 
truncations. (Remember that {xn} is nonnegative and p is positive in what 
follows.) First, successive truncations of the approximant CQ conform to the 
inequality 

Furthermore, the approximants form a non-

To see this, start with xk + p(xk + i) > xk and construct each approximant back-
wards to XQ. Finally, from the formula 
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c = x0 +
 p ( x 1 +

p ( . . . +
 p(x._1 +

 p ( q ) ) . . . ) ) 
it is clear that a continued power converges if any truncation converges. 

The necessity of Theorem 2 is easily proved by applying the inequality for 
successive truncations n times to CQ and letting n -> °°: 

n \Vn 

C>- (C) 
0 x n I 

X„ 

C ̂  lim xp . 
0 n+™ 

CT converges; hence, {xp } is bounded. 
On the other hand, suppose there is an M > 0 such that xp < M for all n > 

0 or, equivalently, xn < Mp ". With this, one can construct the inequality 

xQ + P(xl + p(.». + p(xn) ...)) ̂  M + p(Afp_1+ p(... + p(Mp_n) .-•))-

Multiplying the right side by M/M and distributing the denominator through the 
successive parentheses results in 

C (p, xt) < M[l + P(l + p(... + P(l) ...))] 
i = 0 

or 
C (p, ̂ ) ^ M C (p, 1). 

The continued root on the right converges as n + °°, because 1 is in the set of 
constants for all continued roots. The nondecreasing approximants on the left 
are therefore bounded; hence, C™=0(p, x^) converges, which finishes the proof. 

The condition of Theorem 3 is met by most common sequences. An example of 
a divergent continued root is 

C (L 2^) = 2 + ^(2^ + ^/(216 + ^(264 + ^( ... 

where the sequence of terms fails the "upper bound" test: (24 ) p = 2^'^^n + «>. 

5. Continued Powers of Arbitrary Terms; p > 1 

As p exceeds the critical value 1, continued pth powers converge with mark-
edly lower enthusiasm. They behave stubbornly, although not pathologically— 
for, given the hypotheses of this discourse, we are favored at least with a 
nondecreasing sequence of approximants—and in one sense the most reticent 
examples are infinite series (p = 1). In this section we will show that, among 
other things, the better-known convergence tests for series are just limiting 
cases of conditions which hold for general continued pth powers (p > 1). 

For instance, it is common knowledge that, if an infinite series converges, 
then its nth term must approach zero. The analogous property for continued 
powers is summarized in 

Theorem 3: For p > 1, the continued pth power with terms xn > 0 and interval 
of convergence [0, R] converges if lim sup xn < R. For p > 1, it diverges if 
lim inf xn > R. 

Proof: We first prove the latter assertion. If lim inf xn = B > R, then for 
each e > 0 there is a natural number N such that B - e < xn for all n > N. In 
particular, choose e = EQ > 0 such that R < B - eg < xn> an^ f° r convenience, 
set v - B - eg. Then use v < xn for all n > N to construct 

v + p(v + p(... + V(v) ...)) < xN +
 p(xN+l + p(... + P(xn) ...)). 
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More compactly we have , i n the l i m i t i n g c a s e , 

C (p, v) < C (p, x^. 
i = N i = N 

But C™=N(p, v) diverges, because v = B - e0
 i s greater than R and not in the 

interval of convergence. Therefore, the truncation C°°  (p, x^) diverges, and 
likewise the entire continued power. 

A similar argument shows that, if lim sup xn = B < R, the continued power 
converges. However, if R = 0, we would be assuming that lim sup xn = B < 0, 
which for a nonnegative sequence is a malfeasance. By excluding the case p = 1 
(for which R = 0), we salvage this argument and complete the proof. 

We come now to a situation wherein continued powers show substantially 
greater resistance to examination. The deep questions of our present line of 
inquiry involve powers greater than one and terms xn for which 

lim inf xn < R < lim sup xn. 

One of the simplest examples with these features is the continued square 

C (2, ti), 

where we have nonnegative constants a and b such that £2i + l = a» ^2i = »̂ anc^ 
a < 1/4 < b (R = 1/4 for a continued square). That is, 

C (2, t ) = b + 2(a + 2(b + 2(a + ...)))• 
i= 0 

Our approach to this example parallels the development of Section 3. The prob-
lem of "backwards" associativity is overcome by the identities 

(5) b + 2(a + 2(*.. + 2(a + 2(b)) ...)) 

= ((... ((b)2 + a ) 2 + • . . ) 2 + a ) 2 + 2>, 

where each side has the same odd number of terms, and 

(6) b + 2(a + 2(*.- + 2(b + 2(a)) ...)) 

= ((... ((a)2 + b)2 + . . . ) 2 + a ) 2 + b, 

where each side has the same even number of terms. The right-hand sides of 
these equations can each be thought of as an unabbreviated fixed-point algo-
rithm generated by the function ga b(x) = (x2 + a)2 + b; in equation (5) the 
starting point is x = b, while in (6) it is x = 0. We want this algorithm to 
converge to the same limit regardless of the point at which it starts. Under 
our hypotheses, gaii) is positive, strictly increasing, and "concave upwards" in 
R+; a and b are not both 0; thus, it follows that there is a unique point in R+ 

where the derivative of g ^ equals 1. This leads to the equation 4#3 + kax - 1 
= 0, having a single positive real solution which we call y (stated explicitly 
below). 

The convergence of the fixed-point algorithm using ga ^ can now be assured. 
For b = y - (y2 + a ) 2 , the unique attracting fixed point in R+ of ga ^ is the 
point of tangency of y = ga ^(x) and y = x. When b < y - (y2 + a)2, y = 
9a,b^x^ intersects y = x in two points lying on either side of x = y, and the 
left one is the desired attracting fixed point. The interval I = [0, y] maps 
into itself, and since both 0 and b are contained in J, they may be used as 
starting points for a convergent fixed-point algorithm using gath . Thus, we 
are led to the following 
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Proposition: For 0 < a < 1/4 < b, the continued square 

b + 2(a + 2(b + 2(a + •--))) 

converges if and only if b < y - (y2 + a)2, where 

Y V 8 V64 27 V 8 V64 27' 

(The reader may find it entertaining to show by this Proposition that b = 
1/4 if a = 1/4, as Theorem 1 requires.) This is not a particularly graceful 
conclusion to an admittedly rough sketch. But not much more elegant, and con-
siderably less specific, is the generalization to powers other than 2, via the 
same argument. 

Theorem 4: Given p > 1, interval of convergence [0, R], and 0 < a < R < b, the 
continued pth power 

b + p(a + P(Z> + p(a + -..))) 

converges if and only if b < y - (yp + a ) p , where y is the unique root in R+ of 
p2(x?+1 + ax)P'1 - 1 = 0 . 

And so the simplest continued power for which lim inf xn < R < lim sup xn 
leads to a result whose application will in most cases require solution of an 
equation by numerical approximation. Worse yet, note that Theorem 4 has 
virtually no relevance to 

b + p(b + p(a + p(b + p(b + p(a + .--))))) 

or to similar constructions in which various arrangements of two constants make 
up the sequence of terms. Such apparitions are manageable to the extent that 
we can find generating functions for equivalent fixed-point algorithms; these 
functions and their derivatives, however, are not likely to be pleasant to work 
with, especially for noninteger p. 

On the other hand, one should not be left believing that the situation is 
near hopeless when lim inf xn < R < lim sup xn. For instance, satisfying 
results are attainable for a continued power whose terms monotonically decrease 
to R. Subsumed by this special case are (not necessarily convergent) infinite 
series whose terms decrease to 0. Just as the ratio of consecutive terms 
sometimes imparts useful information about the convergence of series, so too 
does a kind of "souped-up" ratio test apply to continued pth powers. In fact, 
the continued powers test almost reduces to dfAlembert's ratio test for series 
as p •> 1, but the precarious nature of infinite sums considered as special 
continued powers causes an interesting and instructive discrepancy. 

Theorem 5: For p > 1, the continued pth power with terms xn > 0 converges if 

fan + l)P
 < (p - DP~1 

Xn " pP 

for all sufficiently large values of n. 
Proof: Assume the validity of the ratio test (for n ^ 0, without loss of gener-
ality) in the form (xn+i)P < axn, where c = (p - l)p_1/pp. Using this inequal-
ity, a proof by induction on the index k (k < n) shows that 

(7) C * {xn_k)[l+o p{l + Q P(... + Q P(l + a) ---))], 
n-k 

where the number of a1s on the right is k. When k = n, (7) becomes 

(8) C * xQ[l + c P(l + c p( ... + a p(l + c) ...))], 
0 
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where the number of c1 s is now n. The right side of (8) contains a variation 
on a continued power of constants, equivalent to an unabbreviated fixed-point 
algorithm generated by the function g(x) = 1 + oxp at the starting point x = 0: 

(9) 1 + c P(l + Q p(... + c p(l + c) ...)) 

= ((... (c + 1)P a + ---)p a + l)p o + 1, 

where both sides are of equal length. By applying the conditions (i), (ii) , 
and (iii) from Section 3, this algorithm can be shown to converge on the inter-
val I = [0, p/ (p ~ l)]j which just manages to include both the starting point 
x = 0 and the fixed point X = p/(p - 1) . Thus, the right side of (9) converges 
in the limiting case to p/(p - 1), which when combined with (8) shows that 

(10) lim C ^ xJ P \. 

We therefore infer the congruence of C0°°5 which completes the proof. 

The continued square C™= Q(2 9 4^ _1') is an example of a continued power 
which converges by the test of Theorem 5. The sequence of terms 

{1, 4"1'2 , 4-3^ , 4"7/8 , ...} 

satisfies the inequality (xn+i)2/xn < 1/4; in fact, equality holds for all n. 
That the ratio test is not necessary for convergence, even when the terms 
decrease monotonically, is demonstrated by 

C o ( 2 , ± + 2 - ; ) , 

which converges by comparison with the other continued square mentioned above. 
(The proof depends on the inequality 

I + 2-(»+2) < k^'n "I), 
4 

whose verification is a mildly interesting exercise in its own right.) The 
terms xn = 1/4 + 2~n satisfy the necessary condition lim inf xn = 1/4, but fail 
the ratio test for all n because 

(xn+l)2/xn = \ + l/(22* + 2*+ 2). 

Since (p - l)p_1/pp ^ 1 as p -> 1, Theorem 5 seems to tell us that an infi-
nite series converges if xn + i/xn < 1. The many erroneous aspects of this con-
clusion arise because the fixed point of g(x) = 1 + oxP9 namely X = p/(p - 1) , 
ceases to be finite when p = 1. Thus, in the inequality (10), the series is 
not bounded, and the construction used to prove the ratio test becomes indeter-
minate. 

6. Continued Powers as Function Compositions 

The analytic theory of continued fractions has long recognized that contin-
ued fractions, infinite series, and even infinite products can be defined in 
the complex plane by means of the composition 

(11) Fk(w0) = /o °  /l °  ••" °  .ffĉ o) 

of linear fractional transformations 

fkM = -u L / » k = °> l> 2 > • • • > 
K bk + dkw 
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by suitable choices of ak, b^, ck, and dy. [6]. Many other constructs can be 
defined similarly using different functions for the fk . For instance fk(w) = 
a^ + tw and WQ = 0 produces polynomials in t . For real x, f^(x) = (fl̂ )̂ ) with 
afe > 0, k = 0, 1, 2, . .., generates what is sometimes called a "tower" or a 
"continued exponential": 

.•a* 

where evaluation is made from the top down ([1], [2]). 
This paper has investigated the limiting behavior of (11) when 

fk(x) = xk + xp, with x > 0, p > 0, and a?& > 0 for k = 0, 1, 2, ... . 

The order of composition in (11) is synonymous with the problematical associa-
tivity of continued powers. In retrospect, our progress depended on establish-
ing the convergence of (11) for the special case /Q = fi = • • * = fk = 9> where 
we variously used g(x) = xp + a, g(x) = (xp + a)p + b, and g{x) = 1 + cxp. In 
these cases the composition (11) reduces to 

Fk(0) = g o g o ... o ̂ (0) 

whose handy recursion formula 

Fk(0) = g o Fk_i(0) 
paves the way for conquest by fixed-point algorithms. This method promises to 
be helpful in exploring continued negative powers and other function-composi-
tional objects that distinguish themselves by uncooperatively nesting their 
operations. 
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