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1. Introduction 

Let P and Q be relatively prime integers, a and 3 (a > 3) be the zeros of 
x1 - Px + Q, and, for k = 0, 1, 2, 3, ..., let 

ak _ ak 
(1) Uk = Uk(P, Q) = and Vk = Vk(P, Q) = ak + $k. 

a - 3 
The following result is well known. 

Theorem 0: Let m and n be positive integers, and d = gcdO, n) . 

(i) gcd(^, Un) = Z7d; 

in 7i 
(ii) if -g and ^ are odd, gcd(7^, Vn) = Vd ; 

(iii) if /7z = n, gcd(i/w, Vn) = 1 or 2. 

Using basic identities, Lucas proved Theorem 0 in the first of his two 1878 
articles in which he developed the general theory of second-order linear recur-
rences [5]; Lucas had previously proven parts (i) and (iii) in his 1875 article 
[4], Nearly four decades later, Carmichael [1] used the theory of cyclotomic 
polynomials to obtain both new results and results confirming and generalizing 
many of Lucas? theorems; Theorem 0 was among the results obtained using 
cyclotomic polynomials. 

Curiously, the value of gcd(7TO, Vn) when m and n are not divisible by the 
same power of 2, and of gcd([/w, Vn) for m * n, do not appear in the literature, 
and have, apparently, never been established. It is interesting that the 
values of all three of these gcd's can be rather easily found, for all pairs of 
positive integers m and n, by the application of an approach similar to that 
used in establishing- the Euclidean algorithm to a single sequence of equations. 
We shall prove the following result. 

Main Theorem: Let m = 2a m\ n- 2bnf, mr and n' odd, a and b > 0, and let d = 
gcd(/??, ri) . Then 

(i) gcd(tfm, Un) = Ud9 

'Vd if a = b, 
(ii) gcd(7ffl, Vn) = | 

(iii) gcd(Um, Vn) = | i 

or 2 if a * b; 

Vd if a > b, 

or 2 if a < b. 
The value of gcd(7m, Vn) is even if any only if Q is odd and either P is even 
or 3\d; gcd(Um9 Vn) is even if and only if Q is odd and (1) P and d are even, or 
(2) P is odd and 3\d. 

Our definition of Uk and Vk assures that the above result holds for all 
second-order linear recurring sequences {Uk} and {Vk} satisfying 

U0 = 0, Ux = 1, Un+2 = PUn + l - QUn9 
and 

V0 = 2, Vi = P, Vn+2 = PVn + 1 - QVn. 
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If P = 1 and Q = -l, the sequences are the Fibonacci and Lucas number sequences, 
respectively; for this case, a nice alternate proof of (ii) has been communi-
cated to the author by Paulo Ribenboim, and appears now in [6]. If one defines 
the sequence {Un} more generally, by 

Ul = a, U2 = b, Un+2 = oUn + l + dUn, 

then Lucas' result [ (i) above] will hold under certain circumstances: P. Horak 
& L. Skula [2] have characterized those sequences for which (i) holds. 

In our last section, we shall observe that a result analogous to Theorem 1 
holds for Lehmer numbers and the "associated" Lehmer numbers. 

2. Preliminary Results 

We base our proof on the following formulas, all of which are well-known, 
and are easily verified directly from the definition (1) of Uk and Vk . 

Property L: Let r > s > 0, e = min{p - s, s], and D = P2 - 4§. 

L(i) Uv = Vr.sUs ± Q U\r_2s\> where the + si en is used iff v — 2s > 0, 

L(ii) Vr = VV.SVS - QeV{r_2s\, 

L (Hi) Ur = Ur..sVs ± QeU\r-2s\> where the + sign is used iff r - 2s < 0, 

L(iv) Vr = DUr-8U8 + QeV\r-2s\, 
L(v) Yl = Wl + 4«r. 

We will use the fact that, for k > 0, 

(2) gcd«7k, Q) = gcd(Ffe, Q) = 1, 
which is also readily shown from (1) [or see [1], Th. I]. 

Finally, we require this result concerning the parity of Uk and Vk 9 which 
is easily deduced from (1), using P = a + $ and Q = a$ (or see [1], Th. Ill): 

Parity Conditions: If k = 0, Uk = 1 and Vk = 2. Let k > 0. 

(i) If Q is even, both Uk and Ffe are odd; 

(ii) If § is odd and P is even, then Vk is even, and £/fc is even iff k is; 

(Hi) If § is odd and P is odd, then Uk and Fj, are both even iff 3 | k. 

3. The Basic Result 

Let {y^} and {6^} (i > 0) be sequences of integers. Let TTIQ = 2AM and HQ = 
2B/1/ be positive integers with A and B > 0, Af and N odd, and 777 0 > n 0 ' an(* let 

d0 = \rriQ - 2n0| and d = gcd(m0, n 0 ) ; 

let £w and #n be integers, and Kd be defined by 

^ 0 = V0Hn0 + $0#d0-

Theorem 1: For j = 1, 2 , 3 , . . . , l e t 

mj = n ^ . i , n^ = d^l9 Gm. = i ^ . ^ and Hn. = Kd._i9 i f n ^ > dj-l9 
or 

^ = dj-i, rij = n ^ , 6^ . = Kd._± and # „ . = En^i , i f n ^ < dj-l, 

l e t ^ = \mj ~ 2rij\, and l e t i ^ . be def ined by 

Gmj = ydHn. + 63-Kd.. 
I f , for j > 0, g c d ( ^ . , 6^) = Is then 
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Proof: For each pair of integers v and s, we let (r, s) denote gcd(r, s) . The 
definitions of rrij9 rij, and dj imply that {mj} is a nonincreasing sequence of 
positive integers; let k be the least integer such that mk-\ = mk. Now, i t is 
clear, from our definitions above, that 

(m0, nQ) = (n0, dQ) = (m1, nx) = (nx, dx) = • • • 

= (TTZfe_ 1» nk-i) = (nk_l, d k - i ) . 

Furthermore, by our assumptions that Gm = y-Hn. + $n-Kj and (Gm , 6-) = 1, we 
have, similarly 

(Gm0> HnQ) = (HnQ, Kdo) = ... = (Hnk_i9 Kdk_^. 

Since, by definition, mk = max{nfe>]_, ^ - j } , w^-i = ̂ /<-l o r ^k-l' 

Case 1. If w^_x = n^_]_, then d^-i = \mk-\ - 2nk-i\ = mk-\ also, so 

(m0, nQ) = (Wfc-i, ̂ -1) = /Wfc-i; 

that is, d = w^_i = nk-i = £?&_]_. Hence, in Case 1, 

(GmQ> Hn0) = (Hd> Kd) ' 

Case 2. If tffy-i = <^-l * nk-l> then £^_i = \^ik-i ~ ^nk-l\ implies n^_^ = 0. 
But, then, since ?̂ _i = min{n/c_2> f̂c-2̂ * f̂e-2 = 5̂ this implies 

d = (m0, nQ) = (nfe_2, 0) = nk_2. 

Hence, in Case 2, 

(GmQ, HnQ) = (H^, KdkJ = (^, Z 0 ) . 

For j > 0, let Mj =mj/d, Nj = rij/d, and Dj = dj/d. If A = B, M0, /l/0, and 
Z?0 are each odd; consequently, M j , 71/j, and Ẑj are odd for j = 0, 1, 2, 3, ... . 
This is possible only in Case 1, since, in Case 2, dk-2 = 0, implying that Dk-2 
is even. If A * B, it is easy to see that, for each j, exactly one or exactly 
two of the three integers M j , Nj, and Z?j is (are) even, and this is possible 
only in Case 2, since, in Case 1, /^-l = ^k-\ = Dk-\* This proves the theorem. 

4. Proof of the Main Theorem 

For j > 0, we assume that mn-9 n J, •> d~9 Gm ., Hn., and Kd. are as defined in 
a J J J J J 

Section 3, and Mj, Nj, and £>j are as defined in the proof of Theorem 1. Let 
S(r) denote the number of integers j, 0 < j < k, such that ft^-i ̂ ̂ j'-i' anc^ f° r 

each positive integer i, let p(i) denote the parity of i. 
Lemma 1: If A * B9 and if there exists an integer k such that dk = 0, then 
£(/c) is even if and only if A > B. 
Proof: Assume A * B and that there exists an integer k such that dk (and hence, 
Dk) equals 0. It is clear that the number of integers j, 0 < j < k such that 
Nj-\ ^ Dj-l i s S{k) . Now, A * B implies that, for each j, 

(p(Mj), p(Nj), p(Dj)) = (even, odd, even) or (odd, even, odd), 

and it is clear from the definitions of mj and rij that £(&) is precisely the 
number of changes from one of these two forms to the other, as j assumes the 
values 0, 1, 2, ..., k. Since dk = 0, 

(p(Mk)9 p(Nk), p(Dk)) = (even, odd, even); 
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i t follows tha t S(k) i s even if and only if MQ i s even; tha t i s , i f and only if 
A > B. 

Proof of the Main Theorem: Let e3- = m±n{rrij - nj, nj}. 

(i) We assume without loss of genera l i ty tha t m > n, l e t m = mQ, n = n0, and 
apply Theorem 1 with GmQ = Um , HnQ = UnQ , yj = vm;j-n^ and 6j = ±Q6j', where the 
+ sign i s chosen if and only if rrij - 2rij > 0, for j > 0. For each j > 0, Gm. = 
YjHnj + 6jZ^. implies tha t Kd . = Ud.9 by property L ( i ) ; since (Gm.9 Sj) = 1, as 
observed in Section 2, 

gcd(Um, Un) = gcd(Ud9 Ud) = Ud9 i f a = b, 
and 

gcd(Um9 Un) = gcd(Ud, UQ) = gcd(Ud, 0) = Ud9 If a * b. 

(ii) Assume, again without loss of gene ra l i t y , tha t m > n, and l e t m = JTIQ and 
n = nQ. Defining £OTQ , #nQ , £d j . , Y j - , and 6j as VmQ, Vn 9 7dj. , ^ - - n ^ a n d ~QeJ > 
for j > 0, r e spec t ive ly , we have, by Theorem 1 and L ( i i ) , 

gcd(7w, Vn) = gcd(7d , Vd) = Vd If a = b9 
and 

gcd(7m, Vn) = gcd(7rf, 2) = 1 or 2 if a * b, 

proving ( i i ) . 

(Hi) Case 1. Assume m > n , l e t m = rriQ and n = no? and define £OT , Hn , Kd , 
y 0 , and 60 as [/WQ, VnQ , £/do, f/OTo_n0 and ±Se°» where the + sign i s used i f and 
only if m0 - 2n0 < 0. For j = 1 , 2, 3 , . . . , l e t Yj = DUm..n.s Sj = £ej' , and 
%dj = "^j i f Gm. = 7 „ . . 1 ; and ŷ - = Um..n.9 6j = ±Qeo , and A'dj. = £/dj. £ / GOTj- = 
Un._±9 where the + sign i s used if and only if rrij - 2rij < 0. Corresponding to 
each j ( j > 0 ) , then, Gm. = YjHn. + 6jKd. i s e i t he r L ( i i i ) or L(iv) . 

If a = b9 Theorem 1 implies 

gcd(Um9 Vn) = gcd(7d , Ud) [or, gcd(*7d, Vd)]9 

and it is immediate from (2) and L(v) that this integer is either 1 or 2. 
If a * b9 Theorem 1 implies 

gcd(Um9 Vn) = gcd(7^, UQ) = gcd(7d, 0) = Vd9 
or 

gcd(Um9 Vn) = gcd(Ud9 70) = gcd(Ud, 2) = 1 or 2. 

Now, Gmp = yrHnr + §TKdr changes from one of the forms L(iii) or L(iv) to the 
other as v changes from j - 1 to j if and only if n^-i > dj-i'9 hence, the num-
ber of such changes as j assumes the values 0, 1, 2, ..., k, is S(k) . Since 
&d0

 = Ud0 > t n e integer k such that Kdk = UQ exists if and only if S(k) is even, 
and, by Lemma 1, this happens if and only if a > b; that is, if a * b9 gcd(Um, 
^z) = Vd ̂ f a n d only if a > 2?. 

Case 2. Assume n > m9 let n = m^ and m = UQ9 and define GmQ, HnQ, Kd()9 y0, 
and 60 to be VmQ, UnQ , 7j0, DUmQ.nQ9 and §e° , respectively. All the remaining 
definitions parallel those in Case 1 in the obvious way, and the proof is 
similar. 

The conditions determining whether gcd(7m, Vn) or gcd{Um, Vn) is 1 or 2 
follow immediately from the parity conditions in Section 2. 

Letting Fk = Uk(l9 -1) and Lk = Vk(l9 -1) represent the kth Fibonacci and 
Lucas numbers, respectively, we have the following corollary. 

Corollary: If m = 2amr
9 n = 2hnf, m! and nf odd, a and b ̂  0, and d = gcd(??7, n), 

then 

(i) gcd(Fm9 Fn) = Fd; 

(ii) gcd(Lm, Ln) = Ld If a = b, 2 if a * b and 3\d9 and 1 if a * b and 3)(d; 
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(Hi) gcd(Fm, Ln) = Ld i f a > b, 2 i f a < b and 3\d, and 1 i f a < b and 3)(d. 

5. Lehmer N u m b e r s 

Let R be an integer relatively prime to Q. We let a and 3 denote the zeros 
of x2- - VRx + Q, and redefine 

((a* - 3fe)/(a - 3), if k is odd, 

\(ak - 3^)/(a2 - 3 2 ) , if fc is even, 
and 

\{ak + 3k)/(a + 3 ) , if fc is odd, 

|(afc + 3fe) , if /c is even. 
Ffc = V ^ > Q) 

The numbers £/̂  and 7^ were defined by Lehmer, who developed many of the 
properties of this generalization of Lucas sequences in his 1930 paper [3]. 
The numbers are known, respectively, as Lehmer numbers and the "associated" 
Lehmer numbers. 

The Main Theorem is true for Lehmer numbers and the associated Lehmer num-
bers, except that appropriate changes must be made in the statement concerning 
the parity of the greatest common divisors. We shall not restate the theorem, 
and refer the reader to [3], Theorem 1.3, for the parity conditions for U^ and 

Both Ufr and Vy. are. prime to Q ([3], Th. 1.1), and it is not difficult to 
show, directly from the definitions above, the following counterpart of Prop-
erty L: 

Property L': Let v > s > 0, e = min{p - s, s}, and A = R - kQ. 

Lf (i) Ur = RVT-SUS ± QeU\v..2s\> ff r ^s o d d and s is even, 

Ur = Vr-sUs ± QeU\T-2s\> otherwise;. 

L' (ii) Vr = RVr-sVs - Q V\r-2s\'> if v ^s e v e n a n d s is odd, 

Vr = Vr.sVs - QeV\r-2s\> otherwise; 

L!(iii) Ur = RUT_SVS ± QeU\r-2s\> if v a n d s a r e o d d> 

Ur = Ur-sVs ± QeU\r-2s\> otherwise; 

L'(iv) Vr = RMJr..sUs + QeV\r_2_s\> if T a n d s a r e even, 

Vr = MJr.sU8 + QeV\r-28\> otherwise; 

L'(v) RVl = tiJ\ + kQv, if v is odd, 

Yl = RMJ* + kQv, if r is even. 

The + sign is used in L*(i) if and only if v - 2s > 0, and in L*(iii) if and 
only if r - 2s < 0. 

Each of the identities L?(i) through L'(iv) is of the form 

Gm, = ydHn. + 6jKd.. 
The proof that gcd(Um, Un), gcd(Vm9 Vn), and gcd(Uw, Vn) are set forth in the 
Main Theorem is, then, precisely the same as that given in Section 4, with the 
slight changes required as the above identities replace the identities of 
Property L. 
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