GENERALIZED STAGGERED SUMS

A. G. Shannon

University of Technology, Sydney, 2007, Australia

A. F. Horadam

The university of New England, Armidale, 2351, Australia (Submitted January 1989)

1. Introduction

Wiliam [8] showed that, for the recurring sequence defined by $u_1 = 0$, $u_2 = 1$, and

$$(1.1) \quad u_{n+2} = au_n + bu_{n+1},$$

(1.2)
$$\sum_{n=1}^{\infty} u_n / 10^n = 1 / (100 - 10b - a),$$

where (b + a)/20 and (b - a)/20 are less than 1 and $b = \sqrt{b^2 + 4a}$ (cf. [8]). Thus, for the Fibonacci numbers defined by the same initial conditions and a = b = 1, we get the "staggered sum" of Wiliam:

(1.3) $.0 + .01 + .001 + .0002 + .00003 + \cdots = 1/89.$

It is the purpose of this note to generalize the result for arbitrary-order recurring sequences, and to relate it to an arithmetic function of Atanassov [1].

2. Arbitrary-Order Sequence

More generally, for the linear recursive sequence of order k, defined by the recurrence relation

(2.1)
$$u_n = \sum_{j=1}^{\kappa} (-1)^{j+1} P_j u_{n-j}, n > 1,$$

where the P_j are integers, and with initial conditions $u_0 = 1$ and $u_n = 0$ for n < 0, we can establish that the formal generating function is given by

(2.2)
$$\sum_{n=0}^{\infty} u_n x^n = (x^k f(1/x))^{-1},$$

where f(x) denotes the auxiliary polynomial

(2.3)
$$f(x) = x^k + \sum_{j=1}^k (-1)^j P_j x^{k-j}$$
.

 $u(x)x^k f(1/x) = 1.$

Proof: If

$$u(x) = u_0 + u_1 x + u_2 x^2 + \dots + u_k x^k + \dots,$$

-P₁xu(x) = -P₁u₀x - P₁u₁x² - \dots - P₁u_{k-1}x^k - \dots

then

 $(-1)^k x^k P_k u(x) = (-1)^k P_k u_0 x^k + \cdots,$

so that

$$u(x)\left(1 + \sum_{j=1}^{k} (-1)^{j} P_{j} x^{j}\right) = u_{0} \quad \text{or} \quad u(x) x^{k} \left(x^{-k} + \sum_{j=1}^{k} (-1) P_{j} x^{j-k}\right) = 1$$

or

and

We see then that, for k = 2 and $P_1 = -P_2 = 1$, we get William's case in which x = 1/10, namely

1991]

47

or

$$\sum_{n=0}^{\infty} u_n / 10^{2+n} = 1 / (100 - 10b - a)$$

(where his initial values are displaced by 2 from those here).

 $\sum_{n=0}^{\infty} u_n / 10^n = 1 / 10^{-2} f(10) = 1 / \frac{1}{100} (100 - 10b - a),$

3. Atanassov's Arithmetic Functions

Atanassov [1] has defined arithmetic functions ϕ and Ψ as follows. For

$$n = \sum_{i=1}^{J} a_i 10^{j-i}, \quad a_i \in \mathbb{N},$$

$$\equiv a_1 a_2 \dots a_j, \quad 0 \le a_i \le 9,$$

let $\phi: \mathbb{N} \to \mathbb{N}$ be defined by

$$\phi(n) = \begin{cases} 0 & \text{for } n = 0, \\ \sum_{i=1}^{j} a_i & \text{otherwise;} \end{cases}$$

and for the sequence of functions $\phi_0,\;\phi_1,\;\phi_2,\;\ldots,$

$$\phi_0(n) = n, \ \phi_{\ell+1}(n) = \phi(\phi_{\ell}(n)),$$

let $\Psi: \mathbb{N} \to \Delta = \{0, 1, 2, \dots, 9\}$ be defined by $\Psi(n) = \phi_{\ell}(n)$, in which

$$\phi_{\ell}(n) = \phi_{\ell+1}(n).$$

For example, $\phi(889) = 25$, $\Psi(889) = 7$, since

$$\phi_0(889) = 889, \phi_1(889) = 25, \phi_2(889) = 7 = \phi_3(889)$$

It then follows that

(3.1)
$$\Psi(\Psi(10^k/u(0.1)) + k) = 1,$$

as Table 1 illustrates.

TABLE 1

k 2 3 4 5 6 7 11 10 $\Psi(\underbrace{8\ldots 89}_{k-1 \text{ times}})$ 8 7 6 5 4 3 2 8

The result follows from Theorem 1 and 5 of Atanassov, which are, respectively,

(3.2)
$$\Psi(n + 1) = \Psi(\Psi(n) + 1);$$

(3.3) $\Psi(n + 9) = \Psi(n).$
Thus, $10^{k}/u(1/10) = \underbrace{8 \dots 89}_{k-1 \text{ times}}, \text{ and so,}$
 $\Psi(10^{k}/u(1/10)) = 8(k - 1) + 8 + 1 = 8k + 1,$
and $\Psi(\Psi(10^{k}/u(0.1)) + k) = \Psi(9k + 1) = \Psi(9 + 1) = 1, \text{ as required.}$

4. Other Values of X

The foregoing was for x = 1/10. In Table 2, we list the values of $\Psi(f(x))$ for integer values of k and 1/x = X from 2 to 10 when $P_j = -1$, $j = 1, 2, \ldots, k$, 48

[Feb.

*.**

in the appropriate	recurrence	relation.
--------------------	------------	-----------

TABLE 2

	X/k	2	3	4	5	6	7	8	9	10	
	2	1	1	1	1	1	1	1	1	1	
	3	5	5	5	5	5	5	5	5	5	
	4 5	2	7 4	9 1	8	4	6 4	5 1	1 4	3 1	
	6	2	2	2	2	2	2		2	2	
	7	5	7	2 3	2	4	9	8	1	6	
	8		7	1	7	1	7	1		1	
	9 10	8 8	8 7	8	8 5	8 4	8 3	8 2	8 1	8 9	
o prove these											
	$X^k - X^{k-1}$										
The calculation $(0f \text{ course, } 9^t)$	ns which for $\equiv 0$ when t	ollov = 1	w are	e moo	± 9.	Th	us, í	3 ^t ≡ (), 6	^t ≡ 0, 9	$t \equiv 0$ when
$f(3) \equiv f(6) \equiv$	-N - 1 (m $-4 \equiv 5$, $-7 \equiv 2$, $-1 \equiv 8$ as	od 9				ate	rows	of 1	[abl	e 2.	
Case B: X											
and the second se	1) = (N + 1)									2 – (N	+ 1) - 1.
The only flast and last	terms that	int	eres	t us	, mc	od 9	, in	the			
	(k - 1) -								- A	/ • 1	
											- 1 - 1
= Nk -	$N\sum_{n=1}^{k}n - ($	k –	2) -	1	-			k - 2	time	s	<u>- 1</u> - 1
= Nk -	$\frac{1}{2} N(k - 1)$)k -	(k	- 1)							
	$-\frac{1}{2}(k-1)$										
(-(k-1)	/			N fo	r N	= 3,	6,	9.		
Thus, $f(4) = f(7)$	$= 3k^{2} - k = 6k^{2} - k = -k + 1$	+ 1 + 1									
•						. 10	0 0 1 17	es t	he 1	abulate	d values.
Substitution o	x = 2, 5,										varaco.
$\frac{\text{Case } C}{(4.3)} f(N -$											- 1) - 1
			- (1	- 1). -			(1V	- 1,	- (1)	1) - 1.
As in Case B,			,	V_9		1	o) (1 \ ¹ -	3	-	
Nk(-1)	k-1 - N(k									··· – A	

 $N(-1)^{k-1} - N(k-1)(-1)^{k-2} - N(k-2)(-1)^{k-3} - \cdots - 1 + 1 - 1.$

1991]

49

When k is even, this becomes

$$\frac{-Nk - N(k - 1)}{-1 + 1} = \underbrace{N(k - 2) - N(k - 3)}_{k - 1} + \cdots + \underbrace{2N - N}_{k + 1 + 1}_{k - 1} + \frac{N + N}{-1}_{k - 1}_{k - 1}_{k - 2NK} + \underbrace{N + N + \cdots + N}_{k - 2 \text{ terms}}_{k - 2NK + 1}_{k - 2NK + 1}_{k$$

which agrees with the appropriate entries of Table 2. When \boldsymbol{k} is odd, (4.3) becomes

$$Nk + N(k - 1) - N(k - 2) + N(k - 3) - \dots - N \cdot 2(-1)^{1} - N \cdot 1(-1)^{0} - 1$$

$$-1 + 1 - 1 + 1 - \dots - 1 + 1 - 1 = Nk + N + \dots + N - 2$$

$$= Nk + \frac{1}{2}(k - 1)N - 2$$

$$= \frac{3}{2}Nk - \frac{1}{2}N - 2$$

$$= -3Nk + 4N - 2 \text{ since } 3 \equiv -6, -1 \equiv 8$$

$$\equiv 4N - 2 \text{ since } -3N \equiv 0.$$

Thus,

 $f(2) \equiv 1,$ $f(5) \equiv 4,$ $f(8) \equiv 7,$ as required.

5. Concluding Comments

Wiliam's staggered sum for Pell numbers [4] can be written as (5.1) $.0 + .01 + .002 + .0005 + .00012 + .000029 + \cdots = 1/79$. This is a particular case of Hulbert [5] who also noted a result like (1.3) which can be found in Reichmann [6]. Hulbert stated, without proof, that

(5.2)
$$\sum_{n=1}^{\infty} 10^{-n} F_n = 1/(9.9 - k)$$

(5.3)
$$F_{n+1} = kF_n + F_{n-1}$$
 with $F_1 - 1$, $F_2 = k$ ($k = 1, 2, ..., 8$).

When k = 2, we have the Pell case. We can generalize the Pell sequence by setting $P_1 = 2$, $P_j = -1$, j = 2, ..., k, Then we may extend the work of Section 4 by the addition of a term $-X^{k-1}$ in f(X), for X = 2, 3, ..., 10. Hulbert also noted a staggered sum formed from

(5.4)
$$\sum_{n=1}^{\infty} 10^{-n} {n + n - 1 \choose r} = 10^{-1} (0.9)^{-r+1} (r = 0, 1, 2, ...).$$

This is a particular case of Equation (1.3) of Gould [2], namely

(5.5)
$$\sum_{r=0}^{\infty} {\binom{r+n}{r}} x^r = (1-x)^{-n-1}.$$

~

Curiously, the same issue of the Bulletin where Hulbert's note appeared had in

50

[Feb.

its Puzzle Corner the problem of finding

 $\binom{n}{0}$ + $\binom{n-2}{2}$ + $\binom{n-4}{4}$ + \cdots (5.6)

the series terminating when the binomial coefficients become improper. This, too, follows from Gould whose Equations (1.74) and (1.75) are, respectively [m/2]

$$\sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n-k}{k} = (\alpha^{n+1} - \beta^{n+1})/(\alpha - \beta),$$

$$\sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{n-k}{k} = \frac{1}{2}((-1)^{\lfloor n/3 \rfloor} + (-1)^{\lfloor (n+1)/3 \rfloor}),$$

where $\alpha = (1 + \sqrt{5})/2$, $\beta = (1 - \sqrt{5})/2$, and [•] represents the greatest integer function. It can be seen then that the series (5.6) equals

$$\frac{1}{2} \sum_{k=0}^{\lfloor n/2 \rfloor} (1 + (-1)^k) \binom{n-k}{k} = (\alpha^{n+1} - \beta^{n+1})/2(\alpha - \beta) + ((-1)^{\lfloor n/3 \rfloor} + (-1)^{\lfloor 2(n+1)/3 \rfloor})/4.$$

It is also of interest to note that the generalized sequences of Section 2 are related to statistical studies of such gambling events as success runs [7] and expected numbers of consecutive heads [3].

References

- 1. K. T. Atanassov. "An Arithmetic Function and Some of Its Applications." Bulletin of Number Theory 9 (1985):18-27.
- 2. H. W. Gould. Combinatorial Identities. Morgantown: West Virginia University, 1972.
- K. Hirst. "Are m Heads Better than Two?" International Journal of Mathe-3. matical Education in Science and Technology 19 (1988):687-90.
 A. F. Horadam. "Pell Identities." Fibonacci Quarterly 9 (1971):245-63.
 B. J. Hulbert. "Fibonacci Sequences." Bulletin of the Institute of Mathe-
- matics and Its Applications 14 (1978):187.
- 6.
- W. J. Reichmann. The Spell of Mathematics (quoted in Hulbert). A. Tomkins & D. Pitt. "Runs and the Generalised Fibonacci Sequence." Mathe-7. matical Gazette 69 (1985):109-13.
- 8. D. Wiliam. "A Fibonacci Sum." Mathematical Gazette 69 (1985):29-31.
