GENERALIZED STAGGERED SUMS

A. G. Shannon
University of Technology, Sydney, 2007, Australia

A. F. Horadam

The university of New England, Armidale, 2351, Australia
(Submitted January 1989)

1. Introduction

Wiliam [8] showed that, for the recurring sequence defined by $u_{1}=0, u_{2}=1$, and
(1.1) $u_{n+2}=a u_{n}+b u_{n+1}$,
(1.2) $\sum_{n=1}^{\infty} u_{n} / 10^{n}=1 /(100-10 b-a)$,
where $(b+\alpha) / 20$ and $(b-\alpha) / 20$ are less than 1 and $b=\sqrt{b^{2}+4 \alpha}$ (cf. [8]). Thus, for the Fibonacci numbers defined by the same initial conditions and $\alpha=b=1$, we get the "staggered sum" of Wiliam:
(1.3) $.0+.01+.001+.0002+.00003+\ldots=1 / 89$.

It is the purpose of this note to generalize the result for arbitrary-order recurring sequences, and to relate it to an arithmetic function of Atanassov [1].

2. Arbitrary-Order Sequence

More generally, for the linear recursive sequence of order k, defined by the recurrence relation
(2.1) $u_{n}=\sum_{j=1}^{k}(-1)^{j+1} P_{j} u_{n-j}, n>1$,
where the P_{j} are integers, and with initial conditions $u_{0}=1$ and $u_{n}=0$ for $n<0$, we can establish that the formal generating function is given by
(2.2) $\sum_{n=0}^{\infty} u_{n} x^{n}=\left(x^{k} f(1 / x)\right)^{-1}$,
where $f(x)$ denotes the auxiliary polynomial
(2.3) $f(x)=x^{k}+\sum_{j=1}^{k}(-1)^{j} P_{j} x^{k-j}$.

Proof: If $\quad u(x)=u_{0}+u_{1} x+u_{2} x^{2}+\cdots+u_{k} x^{k}+\cdots$,
then $\quad-P_{1} x u(x)=-P_{1} u_{0} x-P_{1} u_{1} x^{2}-\cdots-P_{1} u_{k-1} x^{k}-\cdots$,
and $\quad(-1)^{k} x^{k} P_{k} u(x)=(-1)^{k} P_{k} u_{0} x^{k}+\cdots$,
so that
$u(x)\left(1+\sum_{j=1}^{k}(-1)^{j} P_{j} x^{j}\right)=u_{0} \quad$ or $\quad u(x) x^{k}\left(x^{-k}+\sum_{j=1}^{k}(-1) P_{j} x^{j-k}\right)=1$

$$
u(x) x^{k} f(1 / x)=1
$$

We see then that, for $k=2$ and $P_{1}=-P_{2}=1$, we get Wiliam's case in which $x=1 / 10$, namely
or

$$
\sum_{n=0}^{\infty} u_{n} / 10^{n}=1 / 10^{-2} f(10)=1 / \frac{1}{100}(100-10 b-\alpha)
$$

$$
\sum_{n=0}^{\infty} u_{n} / 10^{2+n}=1 /(100-10 b-a)
$$

(where his initial values are displaced by 2 from those here).

3. Atanassov's Arithmetic Functions

Atanassov [1] has defined arithmetic functions ϕ and Ψ as follows. For

$$
\begin{aligned}
n & =\sum_{i=1}^{j} \alpha_{i} 10^{j-i}, \quad \alpha_{i} \in \mathbf{N} \\
& \equiv a_{1} \alpha_{2} \cdots a_{j}, \quad 0 \leq \alpha_{i} \leq 9
\end{aligned}
$$

let $\phi: \mathbb{N} \rightarrow \mathbf{N}$ be defined by

$$
\phi(n)= \begin{cases}0 & \text { for } n=0 \\ \sum_{i=1}^{j} a_{i} & \text { otherwise }\end{cases}
$$

and for the sequence of functions $\phi_{0}, \phi_{1}, \phi_{2}, \ldots$,

$$
\phi_{0}(n)=n, \phi_{\ell+1}(n)=\phi\left(\phi_{\ell}(n)\right)
$$

let $\Psi: \mathbf{N} \rightarrow \Delta=\{0,1,2, \ldots, 9\}$ be defined by $\Psi(n)=\phi_{\ell}(n)$, in which

$$
\phi_{\ell}(n)=\phi_{\ell+1}(n)
$$

For example, $\phi(889)=25, \Psi(889)=7$, since

$$
\begin{aligned}
\phi_{0}(889) & =889 \\
\phi_{1}(889) & =25 \\
\phi_{2}(889) & =7 \\
& =\phi_{3}(889)
\end{aligned}
$$

It then follows that
(3.1) $\Psi\left(\Psi\left(10^{k} / u(0.1)\right)+k\right)=1$,
as Table 1 illustrates.

\[

\]

The result follows from Theorem 1 and 5 of Atanassov, which are, respectively,
(3.2) $\Psi(n+1)=\Psi(\Psi(n)+1) ;$
(3.3) $\Psi(n+9)=\Psi(n)$.

Thus, $10^{k} / u(1 / 10)=\underbrace{8 \ldots 89}_{k-1 \text { times }}$, and so,
$\Psi\left(10^{k} / u(1 / 10)\right)=8(k-1)+8+1=8 k+1$,
and

$$
\Psi\left(\Psi\left(10^{k} / u(0.1)\right)+k\right)=\Psi(9 k+1)=\Psi(9+1)=1, \text { as required }
$$

4. Other Values of X

The foregoing was for $x=1 / 10$. In Table 2 , we list the values of $\Psi(f(x))$ for integer values of k and $1 / x=X$ from 2 to 10 when $P_{j}=-1, j=1,2, \ldots, k$, 48
in the appropriate recurrence relation.
TABLE 2

X / k	2	3	4	5	6	7	8	9	10
2	1	1	1	1	1	1	1	1	1
3	5	5	5	5	5	5	5	5	5
4	2	7	9	8	4	6	5	1	3
5	1	4	1	4	1	4	1	4	1
6	2	2	2	2	2	2	2	2	2
7	5	7	3	2	4	9	8	1	6
8	1	7	1	7	1	7	1	7	1
9	8	8	8	8	8	8	8	8	8
10	8	7	6	5	4	3	2	1	9

To prove these results, we let $x=1 / X$ and so
(4.1) $f(X)=X^{k}-X^{k-1}-X^{k-2}-\cdots-X^{2}-X-1$.

The calculations which follow are mod 9. Thus, $3^{t} \equiv 0,6^{t} \equiv 0,9^{t} \equiv 0$ when $t \geq 2$.
(Of course, $9^{t} \equiv 0$ when $t=1$.)
Case A: $X=3,6,9=N$,

$$
f(N) \equiv-N-1(\bmod 9) \text { for all } k,
$$

$$
f(3) \equiv-4 \equiv 5
$$

$$
f(6) \equiv-7 \equiv 2,
$$

$$
f(9) \equiv-1 \equiv 8 \text { as in the appropriate rows of Table } 2 .
$$

Case B: $\quad X=4,7,10=3+1,6+1,9+1=N+1$,
(4.2) $f(N+1)=(N+1)^{k}-(N+1)^{k-1}-\cdots-(N+1)^{2}-(N+1)-1$.

The only terms that interest us, mod 9, in the expansions are the second last and last in each expansion. Then (4.2) becomes

Substitution of the values $k=2,3, \ldots, 10$ gives the tabulated values.
Case C: $\quad X=2,5,8=3-1,6-1,9-1,=N-1$,
(4.3) $f(N-1)=(N-1)^{k}-(N-1)^{k-1}-\cdots-(N-1)^{2}-(N-1)-1$.

As in Case B, this becomes

$$
\begin{aligned}
& N k(-1)^{k-1}-N(k-1)(-1)^{k-2}-N(k-2)(-1)^{k-3}-\cdots-N \cdot 2(-1)^{1} \\
& \quad-N \cdot 1(-1)^{0}+(-1)^{k}-(-1)^{k-1}-(-1)^{k-2}-\cdots-1+1-1
\end{aligned}
$$

$$
\begin{aligned}
& N k-N(k-1)-N(k-2)-\cdots-N \cdot 3-N \cdot 2-N \cdot 1 \\
& +1-1 \underbrace{-1-1-\ldots-1-1-1}_{k-2 \text { times }}-1 \\
& =N k-N \sum_{n=1}^{k} n-(k-2)-1 \\
& =N k-\frac{1}{2} N(k-1) k-(k-1) \\
& =\operatorname{Nk}\left\{1-\frac{1}{2}(k-1)\right\}-(k-1) \\
& \equiv N k^{2}-(k-1) \text { since }-N \equiv 2 N \text { for } N=3,6,9 \text {. } \\
& \text { Thus, } \quad f(4)=3 k^{2}-k+1 \\
& f(7)=6 k^{2}-k+1 \\
& f(10)=-k+1 \text { since } 9 k^{2} \equiv 0 .
\end{aligned}
$$

When k is even, this becomes

$$
\begin{aligned}
\underbrace{-N k-N(k-1)}=\underbrace{N(k-2)-N(k-3)}+\cdots+\underbrace{-1+1+1-1}+\cdots+2 N K & +\underbrace{2 N-N+N+1}_{\text {terms }}+\underbrace{+1+1+1}_{N}+1 \\
& =-2 N K+\frac{1}{2} k N+1 \\
& =-\frac{3}{2} N k+1 \\
& \equiv 3 N k+1 \quad \text { since }-3 \equiv 6 \\
& \equiv 1 \quad \text { since } 3 N \equiv 0,
\end{aligned}
$$

which agrees with the appropriate entries of Table 2.
When k is odd, (4.3) becomes

$$
\begin{aligned}
N k+N(k-1)-N(k-2)+N(k-3) & -\cdots-N \cdot 2(-1)^{1}-N \cdot 1(-1)^{0}-1 \\
\underbrace{-1+1} \underbrace{-1+1}-\cdots \underbrace{-1+1}_{(k-1) / 2 \operatorname{terms}}-1 & =N k+\underbrace{N+N+\cdots+N}-2 \\
& =N k+\frac{1}{2}(k-1) N-2 \\
& =\frac{3}{2} N k-\frac{1}{2} N-2 \\
& \equiv-3 N k+4 N-2 \text { since } 3 \equiv-6 \\
& \equiv 4 N-2 \\
& \text { since }-3 N \equiv 0
\end{aligned}
$$

Thus,

$$
\begin{aligned}
f(2) & \equiv 1, \\
f(5) & \equiv 4, \\
f(8) & \equiv 7, \text { as required. }
\end{aligned}
$$

5. Concluding Comments

Wiliam's staggered sum for Pell numbers [4] can be written as
$(5.1) \quad .0+.01+.002+.0005+.00012+.000029+\ldots=1 / 79$.
This is a particular case of Hulbert [5] who also noted a result like (1.3) which can be found in Reichmann [6]. Hulbert stated, without proof, that
(5.2) $\quad \sum_{n=1}^{\infty} 10^{-n} F_{n}=1 /(9.9-k)$
for
(5.3) $\quad F_{n+1}=k F_{n}+F_{n-1}$ with $F_{1}-1, F_{2}=k(k=1,2, \ldots, 8)$.

When $k=2$, we have the Pell case. We can generalize the Pell sequence by setting $P_{1}=2, P_{j}=-1, j=2, \ldots, k, \ldots$. Then we may extend the work of Section 4 by the addition of a term $-X^{k-1}$ in $f(X)$, for $X=2,3, \ldots, 10$.

Hulbert also noted a staggered sum formed from
(5.4) $\quad \sum_{n=1}^{\infty} 10^{-n}\binom{r+n-1}{r}=10^{-1}(0.9)^{-r+1}(r=0,1,2, \ldots)$.

This is a particular case of Equation (1.3) of Gould [2], namely
(5.5) $\quad \sum_{r=0}^{\infty}\binom{r+n}{r} x^{r}=(1-x)^{-n-1}$.

Curiously, the same issue of the Bulletin where Hulbert's note appeared had in
its Puzzle Corner the problem of finding

$$
\begin{equation*}
\binom{n}{0}+\binom{n-2}{2}+\binom{n-4}{4}+\cdots \tag{5.6}
\end{equation*}
$$

the series terminating when the binomial coefficients become improper. This, too, follows from Gould whose Equations (1.74) and (1.75) are, respectively

$$
\begin{aligned}
& \sum_{k=0}^{[n / 2]}\binom{n-k}{k}=\left(\alpha^{n+1}-\beta^{n+1}\right) /(\alpha-\beta) \\
& \sum_{k=0}^{[n / 2]}(-1)^{k}\binom{n-k}{k}=\frac{1}{2}\left((-1)^{[n / 3]}+(-1)^{[(n+1) / 3]}\right)
\end{aligned}
$$

where $\alpha=(1+\sqrt{5}) / 2, \beta=(1-\sqrt{5}) / 2$, and $[\cdot]$ represents the greatest integer function. It can be seen then that the series (5.6) equals
$\frac{1}{2} \sum_{k=0}^{[n / 2]}\left(1+(-1)^{k}\right)\binom{n-k}{k}$
$=\left(\alpha^{n+1}-\beta^{n+1}\right) / 2(\alpha-\beta)+\left((-1)^{[n / 3]}+(-1)^{[2(n+1) / 3]}\right) / 4$.
It is also of interest to note that the generalized sequences of Section 2 are related to statistical studies of such gambling events as success runs [7] and expected numbers of consecutive heads [3].

References

1. K. T. Atanassov. "An Arithmetic Function and Some of Its Applications." Bulletin of Number Theory 9 (1985):18-27.
2. H. W. Gould. Combinatorial Identities. Morgantown: West Virginia University, 1972.
3. K. Hirst. "Are m Heads Better than Two?" International Journal of Mathematical Education in Science and Technology 19 (1988):687-90.
4. A. F. Horadam. "Pell Identities." Fibonacci Quarterly 9 (1971):245-63.
5. B. J. Hulbert. "Fibonacci Sequences." Bulletin of the Institute of Mathematics and Its Applications 14 (1978):187.
6. W. J. Reichmann. The Spell of Mathematics (quoted in Hulbert).
7. A. Tomkins \& D. Pitt. "Runs and the Generalised Fibonacci Sequence." Mathematical Gazette 69 (1985):109-13.
8. D. Wiliam. "A Fibonacci Sum." Mathematical Gazette 69 (1985):29-31.
