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1. I n t r o d u c t i o n a n d Theorem 

Let 

J] di(u)2~'1 , where di (oo) = 0 or 1 for i = 1, 2, . .., 
i= 1 

denote the dyadic expansion of any element 00 in the closed unit interval [0, 1], 
This expansion is unique except when (D is a dyadic rational 

(2m - l)2~n, m = 1, 2, ..., 2n~l
9 n = 1, 2, ..., 

in which case there are two such expansions, the terminating one concluding 
with an unending succession of zeros and the nonterminating one concluding with 
an unending succession of ones. To insure uniqueness, we quite arbitrarily 
choose the terminating expansion in such a case. 

Of particular interest is the asymptotic behavior of 
m 

pmM = m~l £ diM, 
i= 1 

the proportion of ones appearing among the first m dyadic places in the expan-
sion of 00, for m = 1, 2, ... . Borel [2] asserted that "almost all" 03 in 
[0, 1] have the property that the limiting value of this proportion is 1/2. 
More precisely, if v is the Lebesgue measure on the class of Borel measurable 
subsets of [0, 1] and if 

5 = {a) : 0 < a) < 1, lim pm (00) = 1/2}, 
m -> co 

then v(S) = 1. Borel fs arguments in support of this impressive fact were 
flawed, but valid proofs were supplied by later workers (see [1]). The set S 
defines those numbers in [0, 1] which are said to be simply normal to base 2. 

The very definition of simply normal numbers induces rather natural fami-
lies of partitions of [0, 1]. Motivated by the definition of S and the fact 
that, for each fixed positive real number e less than 1/2 (to avoid trivial-
ity) , the inequality 

\p (uO - 1/21 > e 
holds for only finitely many values of 777 for every co in S, we can sharpen 
Borelvs landmark result by considering the following measurable functions 
which, moreover, can be defined for all 00 in [0, 1]: 

I (00, e) = sup{7?? : m = 1, 2, . . . , and p (03) > 1/2 + e} 

and 

n(a3, e) E Xl~({a3: 0 < 03 < 1, p (03) > 1/2 + e}), 
m= 1 m 

where the supremum of the empty set is 0 and 1(A) is the indicator function of 
the set A, Thus, in the expansion of 03, £(03, e) is the "largest" dyadic place, 
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and n(o), e) is the total "number" of dyadic places, at which the proportion of 
ones up to that place exceeds 1/2 + e. Note that these functions assume the 
value +°o for infinitely many GO in [0, 1], but Borelfs result implies that the 
sets on which they assume an infinite value have Lebesgue measure zero. 

For every GO in S, the values of these functions are nonnegative integers. 
It is illuminating, therefore, to decompose S according to the values of each 
of these functions, creating the families of countable partitions £(e) and 91(e) 
having respective members 

L- = {w: w e 5, &(o), e) = j}, J = 0, 1, 2, . . . , 
and 

Nj E { GO : GO e £, n (GO , e) = j }, j = 0, 1, 2, ... . 

The following theorem gives the Lebesgue measures of the members of each of 
these partitions when e = k/(2k + 4) for any positive integer k. 

Theorem: Suppose e = k/(2k + 4) for some positive integer k. Then 

v(L0) = v(N0) = 1 - yk, 

and for j = 1, 2, ..., 

i f j ^ 0 mod (fc + 2 ) ; whereas v(Lj) = 0 i f J = 0 mod (A: + 2) , and 

. [ J 7 ( / C + 2 ) ] . . . 
v(Nj) = (1 - y,)2-J £ [1 - (& + 2 ) £ / j ] K ) . 

i = o x w 

Here, yk is the unique solution of xk + 2- - 2x + 1 = 0 in the open interval (0, 1) 
and [£] is the greatest integer not exceeding t . 

Remark 1: I f j = r mod (k + 2 ) , where r = 0, 1, . . . , fc + 1, then we have t h a t 

(k + 2)(U/0c + 2 ) ] + 1) - j = k + 2 - p . 
Remark 2: For /c = 1, 2, 3, 4, and 5 and k •> °°, the values of v(Lj) are tabled 
in [3] for 

j = 0, 1, ..., inf</z: X v(LJ-) > 0.9999 

and the values of v(Nn-) are tabled in [7] for 

( h 

j = 0, 1, ..., lnf<h: X) v(#j) - 0.9999 
( 3'0 

Remark 3: Our theorem remains true if pm((^) is interpreted as the proportion 
of zeros appearing among the first m dyadic places in the expansion of GO for 
m = 1, 2, ... . Furthermore, since the proportion of zeros exceeds 1/2 + e if 
and only if the proportion of ones is less than 1/2 - e, our theorem remains 
valid when the strict inequalities are reversed and e is replaced by -e in the 
definitions of io(co, e) and ft(oj, e) . 

Note: Because 
/fc + l \ 

^ + 2 - 2x + 1 = (x - 1)1 X ) ^ " 1) 

and, for 0 < x < 1/2, 
fc + l 
X) a^ < 1, 
i= 1 

ŷ  is the unique solution of 
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k+ 1 
Y^ ^ = 1 in (1/2, 1) for every positive integer k. 

i= l 
We now show that yk = r~+1, the reciprocal of the (k + l)st Fibonacci root tabled 
in [5] for fe = 1, 2, ..., 18. For any positive integer K> 2, consider the K-
generalized Fibonacci numbers defined by fK(j) = 0, for j = 0, . .., K - 2, 
fK(K - 1) = 1, and 

K 

fK U) = E fK U - i) f or j = Z, K + 1, . . . , 
i = 1 

and tabled in [5] for K = 2, . .., 7 and j = 0, . .., 15. Miles [6] proved that 

lim j^(j + D/fKU) = ^ 

where r is the unique solution of 
K- 1 

Y xl = xK in (1, 2). 
i = o 

It follows that p"1 is the unique solution of 
K 

X xl = 1 in (1/2, 1); 

-1 hence, y = pfc+1for fc = 1, 2, 

Proof of the Theorem 

If SG denotes the complement of S with respect to [0, 1], then v(Sa) = 0, 
and since, for j = 0, 1, 2, ..., 

{GO : 0 < GO < 1, £(co, e) = j} = Lj u (ID : ID e 5C, £(o), e) = j}, 

it follows that 

v(Lj) = v({w: 0 < oo < 1, £(oo, e) = j}). 

Similarly, for every nonnegative integer j, 

v(/l/J-) = v({oo: 0 < to < 1, n(o), e) = j}) . 

Now it is well known (see, e.g., [4], Ex. 4, p. 56) that <d^(u))> is a se-
quence of independent random variables (functions) on [0, 1] for which 

P E V({0):0 < 03 < l,.^(o)) = 1}) = 1/2 
and 

q = v({o):0 < oo < 1, ̂ (co) = 0}) = 1/2 

for every positive integer £, since Ĵ (co) = 1 on 2 t _ 1 disjoint intervals each 
of length 2~z , and similarly for ^7;(GJ) = 0. Note that 

{<^(o))> : 0 < oo < 1} 

differs from the set of all sequences of zeros and ones only by the set of 
sequences corresponding to the nonterminating expansions of the set of dyadic 
rationals mentioned above. As this latter set is countable and, hence, of 
measure zero, its inclusion or exclusion has no effect in our work. 

If we define the Rademacher functions 

x^(n}) = 2di(u) - 1, i = 1, 2, ..., 

so that <x^(ud)> is a sequence of independent and identically distributed random 
variables such that ĉ̂- (oo) = +1 or -1 with respective probabilities p = 1/2 and 
q = 1/2, then pm(u) > 1/2 + e if and only if sm(u>) > 2em, where 

m 
sffl(o)) E X] 2̂ (00) for every positive integer m. 

i = 1 
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Our theorem then fo l lows immediate ly from the theorems in [3] and [ 7 ] , where 

u = p - q = 0 and A = 2e = k/ (k + 2) , k = 1, 2, . . . . 

3. The Special Case e = 1/6 

The case in which e = 1/6 (k = 1) is particularly attractive since it is 
the smallest e dealt with by our theorem and since yl5 the unique solution of 
x3 - 2x + 1 = 0 in (0, 1), is <J> E (/5 - l)/2, the reciprocal of the ubiquitous 
golden ratio. In this case, our theorem yields V(LQ) - 1 - cj) = cj)2 and, for 
J = 0, 1, ..., 

vtf3j- + i> - • ( 3 J / 1 ) 2 - 3 ^ - 2 , 

and 

v(^3j+2) ! ( w ; 2 ) 2~
d^ 3,7-3 [cj)(3j + 2)/(4j + 4)]v(L3j- + 1 ) , 

with v(L37- + 3) = 0. Here, the successive values of v(L3j- + i) are most easily com-
puted recursively using v(L]_) = (f>/4 and the relation 

<T ^ 3(3j + 4)(3j + 2) . 

^ ^ = 16(J + l)(2J + 3) Va3^' + l)' J = °' U 2' ••• * 

It follows that, for J = 0, 1, 2, ..., 
v(^3j + l) > v(L3</+2) > v(L3j- + 3) = 0 

and 
v(L3j + l) > v(L3j- + i+) 

so that, for increasing values of the subscript, these measures exhibit an in-
teresting "damped saw-tooth" pattern, each value of j corresponding to a single 
tooth. 

It is noteworthy to observe that 

cj> = 1 - v(L0) = 1 - v({o) : a) e S, pm(o>) < 2/3 Mm = 1, 2, ...}) 

= v({o) : oo G S, p (OJ) > 2/3 for some m = 1, 2, ...} ) , 

that is, the set E of simply normal numbers to base 2 in [0, 1] having the 
property that the proportion of ones to some dyadic place in their expansion 
exceeds 2/3 has measure cj). Clearly, S O [1/2, 1], with measure 1/2, is a 
subset of E. Yet, E is dense in [0, 1]. For if n is an arbitrarily small but 
fixed positive real number, then for any 

u> = ^^(03)2'^ in [0, 1], 

consider 
N 2 /1 /+1 

<*>' = E ^ ( w ) 2 - i + £ 2 - < * + ^ + ]T 2 - ^ + 2/0, 
i = 1 J = 1 fc = 1 

where 71/ i s t he s m a l l e s t p o s i t i v e i n t e g e r such t h a t 2~N < n. Here , 

pm(o)') = m"1 £ ^ i ( o j ) + (2/1/ + 1) + Km - 3/1/) / 2 ] 
Li = 1 

so that lim p (OJ') = 1/2; hence, o)' e £. Moreover, 

, f o r ?7Z > 3/1/ + 1 , 

p 3 i , + 1 ( o ) ' ) = (3ff + l ) " 1 £ ^ ( o o ) + (2/1/ + 1) 
U = 1 

> (2/1/ + l ) / ( 3 / l / + 1) > 2 / 3 ; 

therefore, u)r G E. Finally, since o) and o)' agree in the first /!/ dyadic places 
of their expansions, we have | OJ ' - 0) | < 2 -/!/ < n. 
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I t i s a l s o worth n o t i n g t h a t the measures of t h e members of £ ( 1 / 6 ) g iven 
above y i e l d a s imple formula e x p r e s s i n g <J> i n terms of t he s e r i e s 

, ^ ( 3 i + l j 2 . 3 j - and s,t(3't2)^-
j = o \ J I j = 0 \ J / 

For, 

£ v(Lj) = v(S) = 1 = cj)2 + <f> 
J = 0 

implies <j>z//4 + (j)2s/8 = (j); hence5 ((> = 2(4 - y)/z. Note that 

2//4 = l/((|)/5) and g/8 = 1//5. 
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Announcement 
FIFTH INTERNATIONAL CONFERENCE 

ON FIBONACCI NUMBERS 
AND THEIR APPLICATIONS 
Monday through Friday, July 20-24, 1992 

Department of Mathematical and Computational Sciences 
University of St. Andrews 

St. Andrews KY169SS 
Fife, Scotland 

Local Committee 
Dr. Colin M. Campbell, Co-Chairman 
Dr. George M. Phillips, Co-Chairman 

This conference will be sponsored jointly by the Fibonacci Association and the University of 
St. Andrews. Papers on all branches of mathematics and science related to the Fibonacci 
numbers as well as recurrences and their generalizations will be welcome. A call for papers 
will appear in the August 1991 issue of The Fibonacci Quarterly as will additional informa-
tion on the Local and International Committees. 
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