DISTRIBUTION OF RESIDUES OF CERTAIN SECOND-ORDER LINEAR RECURRENCES MODULO p-II

Lawrence Somer

Catholic University of America, Washington, D.C. 20064 (Submitted March 1989)

1. Introduction

Let (u) = u(a, b), called the Lucas sequence of the first kind (LSFK), be a second-order linear recurrence satisfying the relation

(1) $u_{n+2} = au_{n+1} + bu_n$,

where $u_0 = 0$, $u_1 = 1$, and the parameters a and b are integers. Let $D = a^2 + 4b$ be the discriminant of u(a, b). Let (v) = v(a, b), called the Lucas sequence of the second kind (LSSK), be a recurrence satisfying (1) with initial terms $v_0 = 2$, $v_1 = a$. Throughout this paper, p will denote an odd prime unless specified otherwise. Further, d will always denote a residue modulo p. The *period* of u(a, b) modulo p will be denoted by $\mu(p)$. It is known (see [5]) that, if $p \nmid b$, then u(a, b) is purely periodic modulo p. We will always assume that, in the LSFK u(a, b), $p \nmid b$. The *restricted period* of u(a, b) modulo p, denoted by $\alpha(p)$, is the least positive integer t such that $u_{n+t} \equiv su_n \pmod{p}$ for all nonnegative integers n and some nonzero residue s. Then s is called the *principal multiplier* of (u) modulo p. It is easy to see that $\alpha(p) \mid \mu(p)$ and that $\beta(p) = \mu(p)/\alpha(p)$ is the exponent of the principal multiplier s of (u)modulo p.

We will let A(d) denote the number of times the residue d appears in a full period of u(a, b) modulo p and N(p) denote the number of distinct residues appearing in u(a, b) modulo p. In a previous paper [13], the author considered the LSFK u(a, 1) modulo p and gave constraints for the values which A(d) can attain. In particular, it was shown that $A(d) \leq 4$ for all d. Upper and lower bounds for N(p) were given in terms of $\alpha(p)$. Schinzel [8] improved on the constraints given in [13] for the values A(d) can have in the LSFK u(a, 1)modulo p.

In this paper we will consider the LSFK u(a, -1) modulo p and determine the possible values for A(d). In particular, we will show that $A(d) \le 2$ for all d. We will also obtain upper bounds for N(p). If $\alpha(p)$ is known, we will determine N(p) exactly. Schinzel [8] also presented results concerning A(d) for the LSFK $u(a, -1) \pmod{p}$, citing a preprint on which the present paper is based.

In [12], the author obtained the following partial results concerning A(d) in the LSFK $u(a, -1) \pmod{p}$.

Theorem 1: Consider the LSFK $u(\alpha, -1)$ modulo p with discriminant $D = \alpha^2 - 4$.

- (i) If $p \ge 5$ and $p \not\mid D$, then there exists a residue d such that A(d) = 0.
- (ii) If $p \mid D$, then $A(d) \neq 0$ for any d. In particular, we must have that $a \equiv \pm 2 \pmod{p}$. If $a \equiv 2 \pmod{p}$, then

 $u_n \equiv n \pmod{p}$

and A(d) = 1 for all d. If $\alpha \equiv -2 \pmod{p}$, then

 $u_n \equiv (-1)^{n+1}n \pmod{p}$

and A(d) = 2 for all d.

[Feb.

2. Preliminaries

A general multiplier of $u(a, b) \pmod{p}$ is any nonzero residue s' such that

 $u_{n+t} \equiv s'u_n \pmod{p}$

for some fixed positive integer t' and all nonzero integers n. It is known that, if s is the principal multiplier of $u(a, b) \pmod{p}$ and s' is a general multiplier of $u(a, b) \pmod{p}$, then

 $s' \equiv s^i \pmod{p}$

for some *i* such that $0 \le i \le \beta(p) - 1$.

For the LSFK u(a, b), let $k = \alpha(p)$. We will let $A_i(d)$ denote the number of times the residue d appears among the terms

$$u_{ki}, u_{ki+1}, \ldots, u_{ki+k-1}$$
 modulo p,

where $0 \le i \le \beta(p) - 1$. Results concerning $A_i(d)$ will be obtained for the LSFK $u(a, -1) \pmod{p}$.

The following results concerning u(a, b) and v(a, b) are well known:

(2) $v_n^2 - Du_n^2 = 4(-b)^n$;

 $(3) \qquad u_{2n} = u_n v_n.$

Proofs can be found in [4].

3. The Main Theorems

Our results concerning the distribution of residues in the LSFK $u(\alpha, -1)$ modulo p will depend on knowledge of the values of $\alpha(p)$, $\beta(p)$, and (D/p), where (D/p) denotes the Legendre symbol. Theorems 2 and 3 will provide information on the values $\mu(p)$, $\alpha(p)$, and $\beta(p)$ can take for the LSFK $u(\alpha, -1)$ depending on whether (D/p) = 0, 1, or -1.

Theorem 2: Let u(a, b) be a LSFK. Then

(4) $\alpha(p) | p - (D/p).$

Further, if $p \not\mid D$, then

(5) $\alpha(p) | (p - (D/p))/2$

if and only if (-b/p) = 1. Moreover, if (D/p) = 1, then

(6) $\mu(p) | p - 1.$

Proof: Proofs of (4) and (6) are given in [4, pp. 44-45] and [1, pp. 315-17]. Proofs of (5) are given in [6, p. 441] and [1, pp. 318-19].

Theorem 3: Consider the LSFK u(a, -1) with discriminant D. Suppose that $p \nmid D$. Let D' be the square-free part of D. If $|a| \ge 3$, let ε be the funcamental unit of $\mathcal{Q}(\sqrt{D'})$. Let s be the principal multiplier of u(a, -1) modulo p.

(i) $\beta(p) = 1 \text{ or } 2; s \equiv 1 \text{ or } -1 \pmod{p}$. (ii) If $\alpha(p) \equiv 0 \pmod{2}$, then $\beta(p) = 2$. (iii) If $\alpha(p) \equiv 1 \pmod{2}$, then $\beta(p)$ may be 1 or 2. (iv) If (2 - a/p) = (2 + a/p) = -1, then $\alpha(p) \equiv 0 \pmod{2}$ and $\beta(p) = 2$. (v) If (2 - a/p) = 1 and (2 + a/p) = -1, then $\alpha(p) \equiv 1 \pmod{2}$ and $\beta(p) = 2$. (vi) If (2 - a/p) = -1 and (2 + a/p) = 1, then $\alpha(p) \equiv 1 \pmod{2}$ and $\beta(p) = 1$. (vii) If $p \equiv 1 \pmod{4}$, (D/p) = 1, and the norm of ε is -1, then $\alpha(p) | (p - 1)/4$. *Proof:* This is proved in [11, pp. 328-31].

1991]

73

DISTRIBUTION OF RESIDUES OF CERTAIN SECOND-ORDER LINEAR RECURRENCES MODULO P-II

We are now ready for the statement of our principal theorems. Following the notation introduced by Schinzel in [8], we will let S = S(p) denote the set of all the values which A(d) attains in the LSFK u(a, -1) modulo p.

Theorem 4: Let $u(\alpha, -1)$ be an LSFK. Suppose that $\beta(p) = 1$, and let $k = \alpha(p)$. Then $k \equiv 1 \pmod{2}$. Let $A'_0(d)$ denote the number of times the residue d appears among the terms $u_0, u_1, \ldots, u_{(k-1)/2}$ modulo p. Let $A'_1(d)$ denote the number of times the residue d appears among the terms $u_{(k+1)/2}, u_{(k+3)/2}, \ldots, u_k$ modulo p.

(i) A(d) = A(-d). (ii) If $p \ge 5$, then $S = \{0, 1\}$. (iii) A'(d) = 0 or 1 for i = 0, 1. (iv) $A'_0(d) = A'_1(-d)$.

Theorem 5: Let $u(\alpha, -1)$ be an LSFK. Suppose that $\alpha(p) \equiv 1 \pmod{2}$ and $\beta(p) = 2$.

(i) A(d) = A(-d). (ii) If $p \ge 5$, then $S = \{0, 2\}$. (iii) If $d \ne 0 \pmod{p}$, then $A_i(d) = 0$ or 2 for i = 0, 1. (iv) $A_0(0) = A_1(0) = 1$. (v) $A_0(d) = A_1(-d)$.

Theorem 6: Let u(a, -1) be an LSFK with discriminant *D*. Suppose $\alpha(p) \equiv 0 \pmod{2}$. Then $\beta(p) = 2$ and (-D/p) = 1.

(i) A(d) = A(-d).
(ii) A(d) = 1 if and only if d ≡ ±2/√-D (mod p).
(iii) If p ≥ 5, then S = {0, 1, 2}.
(iv) If d ≠ 0 or ±2/√-D (mod p), then A_i(d) = 0 or 2 for i = 0, 1.
(v) If d ≡ 0 or ±2/√-D (mod p), then A_i(d) = 1 for i = 0, 1.
(vi) A₀(d) = A₁(-d).

Theorem 7: Let u(a, -1) be an LSFK. Suppose that p ∤D and a ≠ 0, 1, or -1 (mod p). Let D' be the square-free part of D. Let ε be the fundamental unit of Q(√D'). Let c₁ = 0 if α(p) ≡ 1 (mod 2) and c₁ = 1 if α(p) ≡ 0 (mod 2).
(i) N(p) ≡ 1 (mod 2).
(ii) N(p) ≤ (p - (D/p))/2 + c₁.
(iii) If p ≡ 1 (mod 4), (D/p) = 1, and ε has norm -1, then

 $N(p) \leq (p - 1)/4 + c_1.$

(iv) $N(p) = \alpha(p) + c_1$.

4. Necessary Lemmas

The following lemmas will be needed for the proofs of Theorems 4-7.

Lemma 1: Let u(a, b) be an LSFK. Let s be the principal multiplier of (u) modulo p and let $k = \alpha(p)$. Then

(7) $u_{k-n} \equiv (-1)^{n+1} s u_n / b^n \pmod{p}$, for $0 \le n \le k$. In particular, if $b \equiv -1 \pmod{p}$, then (8) $u_{k-n} \equiv -s u_n \pmod{p}$, for $0 \le n \le k$. *Proof:* We proceed by induction. Clearly, $u_{k-0} \equiv 0 \equiv (-1)^{0+1} s u_0 / b^0 \equiv 0 \equiv u_0 \pmod{p}$.

Also,

 $u_{k-1} \equiv b^{-1}(u_{k+1} - au_k) \equiv b^{-1}(su_1 - a \cdot 0) \equiv (-1)^{1+1}su_1/b^1 \pmod{p}.$

74

[Feb.

Now assume that

$$u_{k-n} \equiv (-1)^{n+1} s u_n / b^n \pmod{p}$$

and

$$u_{k-(n+1)} \equiv (-1)^{n+2} s u_{n+1} / b^{n+1} \pmod{p}.$$

Then

$$\begin{aligned} u_{k-(n+2)} &\equiv b^{-1}(u_{k-n} - au_{k-(n+1)}) \\ &\equiv b^{-1}(-1)^{n+1}s[(bu_n/b^{n+1}) + (au_{n+1}/b^{n+1})] \\ &= b^{-1}(-1)^{n+1}s(u_{n+2}/b^{n+1}) \equiv (-1)^{n+3}su_{n+2}/b^{n+2} \pmod{p}. \end{aligned}$$

The result for $b \equiv -1 \pmod{p}$ follows by inspection.

Lemma 2: Let $u(\alpha, b)$ be an LSFK. Let n and c be positive integers such that $n + c \le \alpha(p) - 1$. Let $k = \alpha(p)$. Then

(9)
$$(u_{n+c}/u_n)(u_{k-n}/u_{k-n-c}) \equiv (-b)^c \pmod{p}$$
.

Proof: This follows from congruence (7) in Lemma 1. Another proof is given in [12, p. 123].

Lemma 3: Consider the LSFK $u(\alpha, b)$. Let c be a fixed integer such that $1 \le c \le \alpha(p) - 1$. Then the ratios u_{n+c}/u_n are all distinct modulo p for $1 \le n \le \alpha(p) - 1$.

Proof: This is proved in [12, pp. 120-21].

Lemma 4: Let $u(\alpha, -1)$ be an LSFK and let $k = \alpha(p)$. Then

 $u_n \not\equiv \pm u_{n+c} \pmod{p}$

for any positive integers n and c such that either $n + c \le k/2$ or it is the case that $n \ge k/2$ and $n + c \le k - 1$.

Proof: Suppose there exist positive integers n and c such that $n + c \le k - 1$ and

 $u_n \equiv \pm u_{n+c} \pmod{p}$.

Then

 $u_{n+c}/u_n \equiv \pm 1 \pmod{p}$. By Lemma 2,

 $(u_{n+c}/u_n)(u_{k-n}/u_{k-n-c}) \equiv 1^c \equiv 1 \pmod{p};$

hence,

 $u_{k-n}/u_{k-n-c} \equiv u_{n+c}/u_n \equiv \pm 1 \pmod{p}$.

Thus, by Lemma 3,

n + c = k - nleading to

n = (k - c)/2.

Consequently,

n = (k - c)/2 and n + c = (k + c)/2.

The result now follows.

Lemma 5: Let u(a, -1) be an LSFK and let $k = \alpha(p)$. Let N_1 be the largest integer t such that there exist integers n_1, n_2, \ldots, n_t for which $1 \le n_i \le \lfloor k/2 \rfloor$ and $u_{n_i} \ne u_{n_j} \pmod{p}$ if $1 \le i < j \le \lfloor k/2 \rfloor$, where $\lfloor x \rfloor$ is the greatest integer less than or equal to x. Then

(10) $N(p) = 2N_1 + 1$.

Proof: By Theorem 3, $\beta(p) = 1$ or 2. First, suppose that $\beta(p) = 2$. Then -1 is the principal multiplier of (u) modulo p and the residue -d appears in (u)

1991]

75

modulo p if and only if d appears in (u) modulo p. Moreover, it follows from Lemma 1 and the fact that -1 is a principal multiplier of (u) modulo p that if $d \not\equiv 0 \pmod{p}$ and d appears in (u) (mod p), then $d \equiv \pm u_{n_i} \pmod{p}$ for some isuch that $1 \leq i \leq N_1$. Including the residue 0, we see that (10) holds.

Now suppose that $\beta(p) = 1$. By congruence (8) in Lemma 1, the residue -d appears in (*u*) modulo *p* if and only if *d* appears in (*u*) modulo *p*. It also follows from Lemma 1 that, if $d \neq 0 \pmod{p}$ and *d* appears in (*u*) modulo *p*, then $d \equiv \pm u_{n_i} \pmod{p}$ for some *i* such that $1 \leq i \leq N_1$. Counting the residue 0, we see that the result follows.

Lemma 6: Let $u(\alpha, -1)$ be an LSFK. Let $k = \alpha(p)$. Let A'(d) denote the number of times the residue d appears among the terms $n_1, n_2, \ldots, n_{\lfloor k/2 \rfloor}$ modulo p. Let N_1 be defined as in Lemma 5.

(i)
$$A'(d) + A'(-d) = 0$$
 or 1.
(ii) $N_1 = \lfloor k/2 \rfloor$.

Proof: (i) follows from Lemma 4; (ii) follows from (i).

Lemma 7: Let u(a, b) be an LSFK. Suppose that $p \nmid b$. Let s be the principal multiplier of (u) modulo p and s^j be a general multiplier of $(u) \pmod{p}$, where $1 \leq j \leq \beta(p) - 1$. Then

$$A(d) = A(s^j d).$$

Proof: This is proved in [13].

Lemma 8: Let u(a, -1) be an LSFK with discriminant *D*. Suppose that $\alpha(p) \equiv 0 \pmod{2}$. Let $k = \alpha(p)$. Then

 $u_{k/2} \equiv \pm 2/\sqrt{-D} \pmod{p}$.

Proof: Since $\alpha(p) \equiv 0 \pmod{2}$, it follows from (4) that $p \nmid D$. By (2), it follows that

(11) $v_{k/2}^2 - Du_{k/2}^2 = 4(1)^{k/2} = 4.$

Now, $u_{k/2} \notin 0 \pmod{p}$. Thus, by (3), $v_{k/2} \equiv 0 \pmod{p}$. Hence, by (11),

 $-Du_{k/2}^2 \equiv 4 \pmod{p}$

and the result follows.

5. Proofs of the Main Theorems

We are finally ready to prove Theorems 4-7.

Proof of Theorem 4: The fact that $\alpha(p) \equiv 1 \pmod{2}$ follows from Theorem 3. (i) and (iv) follow from Lemma 1; (ii) follows from Theorem 1(i), Lemma 6(i), and Lemma 1; (iii) follows from Lemma 6(i) and the fact that A(0) = 1.

Proof of Theorem 5: (i) follows from Lemma 7; (ii) and (iii) follow from Theorem 1(i), Lemma 6(i), Lemma 1, and the fact that -1 is the principal multiplier of $u(\alpha, -1)$ modulo p; (iv) follows by inspection; and (v) follows from the fact that -1 is the principal multiplier of (u) modulo p.

Proof of Theorem 6: The fact that $\beta(p) = 2$ follows from Theorem 3. The fact that (-D/p) = 1 follows from Lemma 8.

(i) follows from Lemma 7; (ii), (iv), and (v) follow from Lemmas 8, 6(i), and 1 and the fact that -1 is the principal multiplier of (u) modulo p; (iii) follows from Theorem 1(i), Lemma 6(i), Lemma 1 and the fact that -1 is the principal multiplier of $u(\alpha, -1)$ modulo p; and (vi) follows from the fact that -1 is the principal multiplier of (u) modulo p.

[Feb.

76

Remark: Note that Theorem 3 gives conditions for the hypotheses of Theorems 4-6 to be satisfied.

Proof of Theorem 7: (i) follows from Lemma 5; (ii) follows from Lemma 5, Lemma 6(ii), and Theorem 2; (iii) This follows from Lemma 5, Lemma 6(ii), and Theorem 3(vii); and (iv) follows from Lemmas 5 and 6(ii).

6. Special Cases

For completeness, we present Theorems 8 and 9 which detail special cases we have not treated thus far. For these theorems, p will designate a prime, not necessarily odd.

Theorem 8: Let $u(\alpha, -1)$ be an LSFK. Suppose $p \not\mid D$.

- (i) If $a \equiv 0 \pmod{p}$, then $\alpha(p) = 2$, $\beta(p) = 2$, N(p) = 3, A(0) = 2, A(1) = A(-1) = 1, and A(d) = 0 if $d \not\equiv 0$, 1, or $-1 \pmod{p}$.
- (ii) If $\alpha \equiv 1 \pmod{p}$ and p > 2, then $\alpha(p) = 3$, $\beta(p) = 2$, N(p) = 3, A(0) = A(1) = A(-1) = 2, and A(d) = 0 if $d \neq 0$, 1, or -1 (mod p).
- (iii) If $a \equiv 1 \pmod{p}$ and p = 2, then $\alpha(p) = 3$, $\beta(p) = 1$, N(p) = 2, A(0) = 1, and A(1) = 2.
- (iv) If $\alpha \equiv -1 \pmod{p}$ and p > 2, then $\alpha(p) = 3$, $\beta(p) = 1$, N(p) = 3, A(0) = A(1) = A(-1) = 1, and A(d) = 0 if $d \not\equiv 0$, 1, or $-1 \pmod{p}$.

Proof: (i)-(iv) follow by inspection.

Theorem 9: Let u(a, -1) be an LSFK. Suppose that $p \mid D$. Then $a \equiv \pm 2 \pmod{p}$. If $a \equiv 2 \pmod{p}$, then $\alpha(p) = p$, $\beta(p) = 1$, N(p) = p, and A(d) = 1 for all residues $d \mod p$. If p > 2 and $a \equiv -2 \pmod{p}$, then $\alpha(p) = p$, $\beta(p) = 2$, N(p) = p, and A(d) = 2 for all residues $d \mod p$.

Proof: This follows from Theorem 1(ii).

Remark: If $D \equiv 0 \pmod{p}$, we see from Theorem 9 that the residues of $u(\alpha, -1)$ are equidistributed modulo p. See [7, p. 463] for a comprehensive list of references on equidistributed linear recurrences.

7. Concluding Remarks

In [8] and [13] it was shown that, for the LSFK u(a, 1) modulo p, $A(d) \leq 4$. In the present paper it was shown that, for the LSFK u(a, -1) modulo p, $A(d) \leq 2$. In [14] we extend these results considerably. Specifically, let w(a, b) be a second-order linear recurrence with arbitrary initial terms w_0 , w_1 over the finite field F_q satisfying the relation

$$\omega_{n+2} = a\omega_{n+1} + b\omega_n.$$

where $b \neq 0$. Then

 $A(d) \leq 2 \cdot \operatorname{ord}(-b)$

for all elements $d \in F_q$, where ord(x) denotes the order of x in F_q .

References

- 1. R. P. Backstrom. "On the Determination of the Zeros of the Fibonacci Sequence." Fibonacci Quarterly 4.4 (1966):313-22.
- G. Bruckner. "Fibonacci Sequences Modulo a Prime p = 3 (mod 4)." Fibonacci Quarterly 8.2 (1970):217-20.
- 3. S. A. Burr. "On Moduli for Which the Fibonacci Sequence Contains a Complete System of Residues." *Fibonacci Quarterly* 9.4 (1971):497-504.

1991]

77 ·

DISTRIBUTION OF RESIDUES OF CERTAIN SECOND-ORDER LINEAR RECURRENCES MODULO P-II

- 4. R. D. Carmichael. "On the Numerical Factors of the Arithmetic Forms $\alpha^n \pm \beta^n$." Ann. Math. Second Series 15 (1913):30-70.
- 5. R. D. Carmichael. "On Sequences of Integers Defined by Recurrence Relations." *Quart. J. Pure Appl. Math.* 48 (1920):343-72.
- 6. D. H. Lehmer. "An Extended Theory of Lucas' Functions." Ann. Math. Second Series 31 (1930):419-48.
- 7. R. Lidl & H. Niederreiter. *Finite Fields*. Reading, Mass.: Addison-Wesley, 1983.
- 8. A. Schinzel. "Special Lucas Sequences, Including the Fibonacci Sequence, Modulo a Prime." To appear.
- 9. A. P. Shah. "Fibonacci Sequences Modulo m." Fibonacci Quarterly 6.1(1968): 139-41.
- 10. L. Somer. "The Fibonacci Ratios F_{k+1}/F_k Modulo p." Fibonacci Quarterly 13.4 (1975):322-24.
- 11. L. Somer. "The Divisibility Properties of Primary Lucas Recurrences with Respect to Primes." Fibonacci Quarterly 18.4 (1980):316-34.
- L. Somer. "Primes Having an Incomplete System of Residues for a Class of Second-Order Linear Recurrences." Applications of Fibonacci Numbers. Ed. by A. N. Philippou, A. F. Horadam, & G. E. Bergum. Dordrecht, Holland: Kluwer Academic Publishers, 1988, pp. 113-41.
- Kluwer Academic Publishers, 1988, pp. 113-41.
 13. L. Somer. "Distribution of Residues of Certain Second-Order Linear Recurrences Modulo p." Applications of Fibonacci Numbers, Vol. 3. Ed. G. E. Bergum, A. N. Philippou, and A. F. Horadam. Dordrecht, Holland: Kluwer Academic Publishers, 1990, pp. 311-24.
- 14. L. Somer, H. Niederreiter, * A. Schinzel. "Maximal Frequencies of Elements in Second-Order Recurrences Over a Finite Field." To appear.
