DISTRIBUTION OF RESIDUES OF CERTAIN SECOND-ORDER LINEAR RECURRENCES MODULO p-II

Lawrence Somer
Catholic University of America, Washington, D.C. 20064
(Submitted March 1989)

1. Introduction

Let $(u)=u(a, b)$, called the Lucas sequence of the first kind (LSFK), be a second-order linear recurrence satisfying the relation

$$
\begin{equation*}
u_{n+2}=a u_{n+1}+b u_{n}, \tag{1}
\end{equation*}
$$

where $u_{0}=0, u_{1}=1$, and the parameters a and b are integers. Let $D=a^{2}+4 b$ be the discriminant of $u(a, b)$. Let $(v)=v(a, b)$, called the Lucas sequence of the second kind (LSSK), be a recurrence satisfying (1) with initial terms $v_{0}=2, v_{1}=a$. Throughout this paper, p will denote an odd prime unless specified otherwise. Further, d will always denote a residue modulo p. The period of $u(\alpha, b)$ modulo p will be denoted by $\mu(p)$. It is known (see [5]) that, if $p \nmid b$, then $u(a, b)$ is purely periodic modulo p. We will always assume that, in the LSFK $u(a, b), p \nmid b$. The restricted period of $u(a, b)$ modulo p, denoted by $\alpha(p)$, is the least positive integer t such that $u_{n+t} \equiv \operatorname{sun}(\bmod p)$ for all nonnegative integers n and some nonzero residue s. Then s is called the principal multiplier of (u) modulo p. It is easy to see that $\alpha(p) \mid \mu(p)$ and that $\beta(p)=\mu(p) / \alpha(p)$ is the exponent of the principal multiplier s of (u) modulo p.

We will let $A(d)$ denote the number of times the residue d appears in a full period of $u(a, b)$ modulo p and $N(p)$ denote the number of distinct residues appearing in $u(a, b)$ modulo p. In a previous paper [13], the author considered the LSFK $u(a, 1)$ modulo p and gave constraints for the values which $A(d)$ can attain. In particular, it was shown that $A(d) \leq 4$ for all d. Upper and lower bounds for $N(p)$ were given in terms of $\alpha(p)$. Schinzel [8] improved on the constraints given in [13] for the values $A(d)$ can have in the LSFK $u(\alpha, 1)$ modulo p.

In this paper we will consider the LSFK $u(a,-1)$ modulo p and determine the possible values for $A(d)$. In particular, we will show that $A(d) \leq 2$ for all d. We will also obtain upper bounds for $N(p)$. If $\alpha(p)$ is known, we will determine $N(p)$ exactly. Schinzel [8] also presented results concerning $A(d)$ for the LSFK $u(\alpha,-1)(\bmod p)$, citing a preprint on which the present paper is based.

In [12], the author obtained the following partial results concerning $A(d)$ in the LSFK $u(\alpha,-1)(\bmod p)$.
Theorem 1: Consider the LSFK $u(a,-1)$ modulo p with discriminant $D=a^{2}-4$.
(i) If $p \geq 5$ and $p \nmid D$, then there exists a residue d such that $A(d)=0$.
(ii) If $p \mid D$, then $A(d) \neq 0$ for any d. In particular, we must have that $a \equiv \pm 2$ $(\bmod p)$. If $\alpha \equiv 2(\bmod p)$, then
$u_{n} \equiv n(\bmod p)$
and $A(d)=1$ for all d. If $\alpha \equiv-2(\bmod p)$, then

$$
u_{n} \equiv(-1)^{n+1} n(\bmod p)
$$

and $A(d)=2$ for all d.

2. Preliminaries

A general multiplier of $u(a, b)(\bmod p)$ is any nonzero residue s^{\prime} such that $u_{n+t} \equiv s^{\prime} u_{n} \quad(\bmod p)$
for some fixed positive integer t^{\prime} and all nonzero integers n. It is known that, if s is the principal multiplier of $u(a, b)(\bmod p)$ and s^{\prime} is a general multiplier of $u(a, b)(\bmod p)$, then

$$
s^{\prime} \equiv s^{i}(\bmod p)
$$

for some i such that $0 \leq i \leq \beta(p)-1$.
For the LSFK $u(\alpha, b)$, let $k=\alpha(p)$. We will let $A_{i}(d)$ denote the number of times the residue d appears among the terms

$$
u_{k i}, u_{k i+1}, \ldots, u_{k i+k-1} \text { modulo } p \text {, }
$$

where $0 \leq i \leq \beta(p)-1$. Results concerning $A_{i}(d)$ will be obtained for the LSFK $u(\alpha,-1)(\bmod p)$.

The following results concerning $u(a, b)$ and $v(a, b)$ are well known:
(2) $v_{n}^{2}-D u_{n}^{2}=4(-b)^{n}$;
(3) $u_{2 n}=u_{n} v_{n}$.

Proofs can be found in [4].

3. The Main Theorems

Our results concerning the distribution of residues in the LSFK $u(a,-1)$ modulo p will depend on knowledge of the values of $\alpha(p), \beta(p)$, and (D / p), where (D / p) denotes the Legendre symbol. Theorems 2 and 3 will provide information on the values $\mu(p), \alpha(p)$, and $\beta(p)$ can take for the LSFK $u(\alpha,-1)$ depending on whether $(D / p)=0,1$, or -1 .
Theorem 2: Let $u(a, b)$ be a LSFK. Then
(4) $\quad \alpha(p) \mid p-(D / p)$.

Further, if $p \nmid D$, then

$$
\begin{equation*}
\alpha(p) \mid(p-(D / p)) / 2 \tag{5}
\end{equation*}
$$

if and only if $(-b / p)=1$. Moreover, if $(D / p)=1$, then
(6) $\quad \mu(p) \mid p-1$.

Proof: Proofs of (4) and (6) are given in [4, pp. 44-45] and [1, pp. 315-17]. Proofs of (5) are given in [6, p. 441] and [1, pp. 318-19].
Theorem 3: Consider the LSFK $u(a,-1)$ with discriminant D. Suppose that $p \nmid D$. Let D^{\prime} be the square-free part of D. If $|\alpha| \geq 3$, let ε be the funcamental unit of $Q\left(\sqrt{D^{\prime}}\right)$. Let s be the principal multiplier of $u(a,-1)$ modulo p.
(i) $\beta(p)=1$ or $2 ; s \equiv 1$ or $-1(\bmod p)$.
(ii) If $\alpha(p) \equiv 0(\bmod 2)$, then $\beta(p)=2$.
(iii) If $\alpha(p) \equiv 1(\bmod 2)$, then $\beta(p)$ may be 1 or 2 .
(iv) If $(2-\alpha / p)=(2+\alpha / p)=-1$, then $\alpha(p) \equiv 0(\bmod 2)$ and $\beta(p)=2$.
(v) If $(2-\alpha / p)=1$ and $(2+\alpha / p)=-1$, then $\alpha(p) \equiv 1(\bmod 2)$ and $\beta(p)=2$.
(vi) If $(2-\alpha / p)=-1$ and $(2+\alpha / p)=1$, then $\alpha(p) \equiv 1(\bmod 2)$ and $\beta(p)=1$.
(vii) If $p \equiv 1(\bmod 4),(D / p)=1$, and the norm of ε is -1 , then $\alpha(p) \mid(p-1) / 4$.

Proof: This is proved in [11, pp. 328-31].

We are now ready for the statement of our principal theorems. Following the notation introduced by Schinzel in [8], we will let $S=S(p)$ denote the set of all the values which $A(d)$ attains in the LSFK $u(\alpha,-1)$ modulo p.
Theorem 4: Let $u(\alpha,-1)$ be an LSFK. Suppose that $\beta(p)=1$, and let $k=\alpha(p)$. Then $k \equiv 1(\bmod 2)$. Let $A_{0}^{\prime}(d)$ denote the number of times the residue d appears among the terms $u_{0}, u_{1}, \ldots, u_{(k-1) / 2}$ modulo p. Let $A_{1}^{\prime}(d)$ denote the number of times the residue d appears among the terms $u_{(k+1) / 2}, u_{(k+3) / 2}, \ldots, u_{k}$ modulo p.
(i) $A(d)=A(-d)$.
(ii) If $p \geq 5$, then $S=\{0,1\}$.
(iii) $A^{\prime}(d)=0$ or 1 for $i=0,1$.
(iv) $A_{0}^{\prime}(d)=A_{1}^{\prime}(-d)$.

Theorem 5: Let $u(\alpha,-1)$ be an LSFK. Suppose that $\alpha(p) \equiv 1(\bmod 2)$ and $\beta(p)=2$.
(i) $A(d)=A(-\bar{d})$.
(ii) If $p \geq 5$, then $S=\{0,2\}$.
(iii) If $d \not \equiv 0(\bmod p)$, then $A_{i}(d)=0$ or 2 for $i=0$, 1 .
(iv) $A_{0}(0)=A_{1}(0)=1$.
(v) $A_{0}(d)=A_{1}(-d)$.

Theorem 6: Let $u(\alpha,-1)$ be an LSFK with discriminant D. Suppose $\alpha(p) \equiv 0$ (mod 2). Then $\beta(p)=2$ and $(-D / p)=1$.

```
            (i) \(A(d)=A(-d)\).
    (ii) \(A(d)=1\) if and only if \(d \equiv \pm 2 / \sqrt{-D}(\bmod p)\).
    (iii) If \(p \geq 5\), then \(S=\{0,1,2\}\).
    (iv) If \(d \not \equiv 0\) or \(\pm 2 / \sqrt{-D}(\bmod p)\), then \(A_{i}(d)=0\) or 2 for \(i=0,1\).
    (v) If \(d \equiv 0\) or \(\pm 2 / \sqrt{-D}(\bmod p)\), then \(A_{i}(d)=1\) for \(i=0,1\).
    (vi) \(A_{0}(d)=A_{1}(-d)\).
```

Theorem 7: Let $u(\alpha,-1)$ be an LSFK. Suppose that $p \nmid D$ and $\alpha \not \equiv 0$, 1 , or -1 (mod p). Let D^{\prime} be the square-free part of D. Let ε be the fundamental unit of $Q\left(\sqrt{D^{\prime}}\right)$. Let $c_{1}=0$ if $\alpha(p) \equiv 1(\bmod 2)$ and $c_{1}=1$ if $\alpha(p) \equiv 0(\bmod 2)$.
(i) $N(p) \equiv 1(\bmod 2)$.
(ii) $N(p) \leq(p-(D / p)) / 2+c_{1}$.
(iii) If $p \equiv 1(\bmod 4),(D / p)=1$, and ε has norm -1 , then

$$
N(p) \leq(p-1) / 4+c_{1}
$$

(iv) $N(p)=\alpha(p)+c_{1}$.

4. Necessary Lemmas

The following lemmas will be needed for the proofs of Theorems 4-7.
Lemma 1: Let $u(a, b)$ be an LSFK. Let s be the principal multiplier of (u) modulo p and let $k=\alpha(p)$. Then
(7) $\quad u_{k-n} \equiv(-1)^{n+1} s u_{n} / b^{n}(\bmod p)$,
for $0 \leq n \leq k$. In particular, if $b \equiv-1(\bmod p)$, then
(8) $u_{k-n} \equiv-s u_{n}(\bmod p)$,
for $0 \leq n \leq k$.
Proof: We proceed by induction. Clearly,

Also,

$$
u_{k-0} \equiv 0 \equiv(-1)^{0+1} s u_{0} / b^{0} \equiv 0 \equiv u_{0}(\bmod p)
$$

$$
u_{k-1} \equiv b^{-1}\left(u_{k+1}-\alpha u_{k}\right) \equiv b^{-1}\left(s u_{1}-\alpha \cdot 0\right) \equiv(-1)^{1+1} s u_{1} / b^{1}(\bmod p)
$$

Now assume that
and

$$
\begin{aligned}
& u_{k-n} \equiv(-1)^{n+1} s u_{n} / b^{n}(\bmod p) \\
& u_{k-(n+1)} \equiv(-1)^{n+2} s u_{n+1} / b^{n+1}(\bmod p) . \\
& u_{k-(n+2)} \equiv b^{-1}\left(u_{k-n}-a u_{k}-(n+1)\right) \\
& \equiv b^{-1}(-1)^{n+1} s\left[\left(b u_{n} / b^{n+1}\right)+\left(a u_{n+1} / b^{n+1}\right)\right] \\
&=b^{-1}(-1)^{n+1} s\left(u_{n+2} / b^{n+1}\right) \equiv(-1)^{n+3} s u_{n+2} / b^{n+2}(\bmod p) .
\end{aligned}
$$

Then

The result for $b \equiv-1(\bmod p)$ follows by inspection.
Lemma 2: Let $u(\alpha, b)$ be an LSFK. Let n and c be positive integers such that $n+c \leq \alpha(p)-1$. Let $k=\alpha(p)$. Then

$$
\begin{equation*}
\left(u_{n+c} / u_{n}\right)\left(u_{k-n} / u_{k-n-c}\right) \equiv(-b)^{c}(\bmod p) \tag{9}
\end{equation*}
$$

Proof: This follows from congruence (7) in Lemma 1. Another proof is given in [12, p. 123].
Lemma 3: Consider the LSFK $u(\alpha, b)$. Let c be a fixed integer such that $1 \leq$ $c \leq \alpha(p)-1$. Then the ratios u_{n+c} / u_{n} are all distinct modulo p for $1 \leq n \leq$ $\alpha(p)-1$.
Proof: This is proved in [12, pp. 120-21].
Lemma 4: Let $u(\alpha,-1)$ be an LSFK and let $k=\alpha(p)$. Then

$$
u_{n} \not \equiv \pm u_{n+c}(\bmod p)
$$

for any positive integers n and c such that either $n+c \leq k / 2$ or it is the case that $n \geq k / 2$ and $n+c \leq k-1$.

Proof: Suppose there exist positive integers n and c such that $n+c \leq k-1$ and

$$
u_{n} \equiv \pm u_{n+c}(\bmod p)
$$

Then

$$
u_{n+c} / u_{n} \equiv \pm 1(\bmod p)
$$

By Lemma 2,

$$
\left(u_{n+c} / u_{n}\right)\left(u_{k-n} / u_{k}-n-c\right) \equiv 1^{c} \equiv 1(\bmod p) ;
$$

hence,

$$
u_{k-n} / u_{k-n-c} \equiv u_{n+c} / u_{n} \equiv \pm 1(\bmod p)
$$

Thus, by Lemma 3,

$$
n+c=k-n
$$

leading to

$$
n=(k-c) / 2
$$

Consequently,

$$
n=(k-c) / 2 \text { and } n+c=(k+c) / 2
$$

The result now follows.
Lemma 5: Let $u(\alpha,-1)$ be an LSFK and let $k=\alpha(p)$. Let N_{1} be the largest integer t such that there exist integers $n_{1}, n_{2}, \ldots, n_{t}$ for which $1 \leq n_{i} \leq[k / 2]$ and $u_{n_{i}} \not \equiv \pm u_{n_{j}}(\bmod p)$ if $1 \leq i<j \leq[k / 2]$, where $[x]$ is the greatest integer less than or equal to x. Then

$$
\begin{equation*}
N(p)=2 N_{1}+1 \tag{10}
\end{equation*}
$$

Proof: By Theorem 3, $\beta(p)=1$ or 2. First, suppose that $\beta(p)=2$. Then -1 is the principal multiplier of (u) modulo p and the residue $-d$ appears in (u)
modulo p if and only if d appears in (u) modulo p. Moreover, it follows from Lemma 1 and the fact that -1 is a principal multiplier of (u) modulo p that if $d \not \equiv 0(\bmod p)$ and d appears in $(u)(\bmod p)$, then $d \equiv \pm u_{n_{i}}(\bmod p)$ for some i such that $1 \leq i \leq N_{1}$. Including the residue 0 , we see that (10) holds.

Now suppose that $\beta(p)=1$. By congruence (8) in Lemma 1 , the residue $-\alpha$ appears in (u) modulo p if and only if d appears in (u) modulo p. It also follows from Lemma 1 that, if $d \not \equiv 0(\bmod p)$ and d appears in (u) modulo p, then $d \equiv \pm u_{n_{i}}(\bmod p)$ for some i such that $1 \leq i \leq N_{1}$. Counting the residue 0 , we see that the result follows.
Lemma 6: Let $u(\alpha,-1)$ be an LSFK. Let $k=\alpha(p)$. Let $A^{\prime}(d)$ denote the number of times the residue d appears among the terms $n_{1}, n_{2}, \ldots, n_{[k / 2]}$ modulo p. Let N_{1} be defined as in Lemma 5.
(i) $A^{\prime}(d)+A^{\prime}(-d)=0$ or 1 .
(ii) $N_{1}=[k / 2]$.

Proof: (i) follows from Lemma 4; (ii) follows from (i).
Lemma 7: Let $u(\alpha, b)$ be an LSFK. Suppose that $p \nmid b$. Let s be the principal multiplier of (u) modulo p and s^{j} be a general multiplier of (u) (mod p), where $1 \leq j \leq \beta(p)-1$. Then

$$
A(d)=A\left(s^{j} d\right)
$$

Proof: This is proved in [13].
Lemma 8: Let $u(\alpha,-1)$ be an LSFK with discriminant D. Suppose that $\alpha(p) \equiv 0$ $(\bmod 2)$. Let $k=\alpha(p)$. Then

$$
u_{k / 2} \equiv \pm 2 / \sqrt{-D}(\bmod p)
$$

Proof: Since $\alpha(p) \equiv 0(\bmod 2)$, it follows from (4) that $p \nmid D$. By (2), it follows that

$$
\begin{equation*}
v_{k / 2}^{2}-D u_{k / 2}^{2}=4(1)^{k / 2}=4 \tag{11}
\end{equation*}
$$

Now, $u_{k} / 2 \not \equiv 0(\bmod p)$. Thus, by (3), $v_{k / 2} \equiv 0(\bmod p)$. Hence, by (11), $-D u_{k / 2}^{2} \equiv 4(\bmod p)$
and the result follows.

5. Proofs of the Main Theorems

We are finally ready to prove Theorems 4-7.
Proof of Theorem 4: The fact that $\alpha(p) \equiv 1$ (mod 2) follows from Theorem 3.
(i) and (iv) follow from Lemma 1 ; (ii) follows from Theorem 1 (i), Lemma 6 (i), and Lemma 1; (iii) follows from Lemma 6 (i) and the fact that $A(0)=1$.

Proof of Theorem 5: (i) follows from Lemma 7; (ii) and (iii) follow from Theorem 1 (i), Lemma 6(i), Lemma 1 , and the fact that -1 is the principal multiplier of $u(a,-1)$ modulo p; (iv) follows by inspection; and (v) follows from the fact that -1 is the principal multiplier of (u) modulo p.

Proof of Theorem 6: The fact that $\beta(p)=2$ follows from Theorem 3. The fact that $(-D / p)=1$ follows from Lemma 8 .
(i) follows from Lemma 7; (ii), (iv), and (v) follow from Lemmas 8, 6(i), and 1 and the fact that -1 is the principal multiplier of (u) modulo p; (iii) follows from Theorem 1 (i), Lemma 6(i), Lemma 1 and the fact that -1 is the principal multiplier of $u(\alpha,-1)$ modulo p; and (vi) follows from the fact that -1 is the principal multiplier of (u) modulo p.

Remark: Note that Theorem 3 gives conditions for the hypotheses of Theorems 46 to be satisfied.
Proof of Theorem 7: (i) follows from Lemma 5; (ii) follows from Lemma 5, Lemma 6 (ii), and Theorem 2; (iii) This follows from Lemma 5, Lemma 6(ii), and Theorem 3(vii); and (iv) follows from Lemmas 5 and 6(ii).

6. Special Cases

For completeness, we present Theorems 8 and 9 which detail special cases we have not treated thus far. For these theorems, p will designate a prime, not necessarily odd.

Theorem 8: Let $u(\alpha,-1)$ be an LSFK. Suppose $p \nmid D$.
(i) If $a \equiv 0(\bmod p)$, then $\alpha(p)=2, \beta(p)=2, N(p)=3, A(0)=2, A(1)=$ $A(-1)=1$, and $A(d)=0$ if $d \not \equiv 0,1$, or $-1(\bmod p)$.
(ii) If $\alpha \equiv 1(\bmod p)$ and $p>2$, then $\alpha(p)=3, \beta(p)=2, N(p)=3, A(0)=$ $A(1)=A(-1)=2$, and $A(d)=0$ if $d \not \equiv 0,1$, or $-1(\bmod p)$.
(iii) If $\alpha \equiv 1(\bmod p)$ and $p=2$, then $\alpha(p)=3, \beta(p)=1, N(p)=2, A(0)=1$, and $A(1)=2$.
(iv) If $a \equiv-1(\bmod p)$ and $p>2$, then $\alpha(p)=3, \beta(p)=1, N(p)=3, A(0)=$ $A(1)=A(-1)=1$, and $A(d)=0$ if $d \not \equiv 0,1$, or $-1(\bmod p)$.
Proof: (i)-(iv) follow by inspection.
Theorem 9: Let $u(\alpha,-1)$ be an LSFK. Suppose that $p \mid D$. Then $\alpha \equiv \pm 2(\bmod p)$. If $\alpha \equiv 2(\bmod p)$, then $\alpha(p)=p, \beta(p)=1, N(p)=p$, and $A(d)=1$ for all residues d modulo p. If $p>2$ and $a \equiv-2(\bmod p)$, then $\alpha(p)=p, \beta(p)=2, N(p)=$ p, and $A(d)=2$ for all residues d modulo p.
Proof: This follows from Theorem $1(i i)$.
Remark: If $D \equiv 0(\bmod p)$, we see from Theorem 9 that the residues of $u(\alpha,-1)$ are equidistributed modulo p. See [7, p. 463] for a comprehensive list of references on equidistributed linear recurrences.

7. Concluding Remarks

In [8] and [13] it was shown that, for the LSFK $u(\alpha, 1)$ modulo $p, A(d) \leq 4$. In the present paper it was shown that, for the LSFK $u(\alpha,-1)$ modulo $p, A(d) \leq$ 2. In [14] we extend these results considerably. Specifically, let $w(a, b)$ be a second-order linear recurrence with arbitrary initial terms ω_{0}, w_{1} over the finite field F_{q} satisfying the relation

$$
w_{n+2}=\alpha w_{n+1}+b w_{n}
$$

where $b \neq 0$. Then

$$
A(d) \leq 2 \cdot \operatorname{ord}(-b)
$$

for all elements $d \in F_{q}$, where ord (x) denotes the order of x in F_{q}.

References

1. R. P. Backstrom. "On the Determination of the Zeros of the Fibonacci Sequence." Fibonacci Quarterly 4.4 (1966):313-22.
2. G. Bruckner. "Fibonacci Sequences Modulo a Prime $p \equiv 3(\bmod 4) . "$ Fibonacci Quarterly 8.2 (1970):217-20.
3. S. A. Burr. "On Moduli for Which the Fibonacci Sequence Contains a Complete System of Residues." Fibonacci Quarterly 9.4 (1971):497-504.

DISTRIBUTION OF RESIDUES OF CERTAIN SECOND-ORDER LINEAR RECURRENCES MODULO p-II
4. R. D. Carmichael. "On the Numerical Factors of the Arithmetic Forms $\alpha^{n} \pm$ β^{n}." Ann. Math. Second Series 15 (1913):30-70.
5. R. D. Carmichael. "On Sequences of Integers Defined by Recurrence Relations." Quart. J. Pure Appl. Math. 48 (1920):343-72.
6. D. H. Lehmer. "An Extended Theory of Lucas' Functions." Ann. Math. Second Series 31 (1930):419-48.
7. R. Lidl \& H. Niederreiter. Finite Fields. Reading, Mass.: Addison-Wesley, 1983.
8. A. Schinze1. "Special Lucas Sequences, Including the Fibonacci Sequence, Modulo a Prime." To appear.
9. A. P. Shah. "Fibonacci Sequences Modulo m." Fibonacci Quarterly 6.1(1968): 139-41.
10. L. Somer. "The Fibonacci Ratios F_{k+1} / F_{k} Modulo p." Fibonacci Quarterly 13.4 (1975):322-24.
11. L. Somer. "The Divisibility Properties of Primary Lucas Recurrences with Respect to Primes." Fibonacci Quarterly 18.4 (1980):316-34.
12. L. Somer. "Primes Having an Incomplete System of Residues for a Class of Second-Order Linear Recurrences." Applications of Fibonacci Numbers. Ed. by A. N. Philippou, A. F. Horadam, \& G. E. Bergum. Dordrecht, Holland: Kluwer Academic Publishers, 1988, pp. 113-41.
13. L. Somer. "Distribution of Residues of Certain Second-Order Linear Recurrences Modulo p." Applications of Fibonacci Numbers, Vol. 3. Ed. G. E. Bergum, A. N. Philippou, and A. F. Horadam. Dordrecht, Holland: Kluwer Academic Publishers, 1990, pp. 311-24.
14. L. Somer, H. Niederreiter, * A. Schinzel. "Maximal Frequencies of Elements in Second-Order Recurrences Over a Finite Field." To appear.

