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1. Introduction 

The enumeration of Kekule structures for benzenoid polycyclic hydrocarbons 
is important because the stability and many other properties of these hydro-
carbons have been found to correlate with the number of Kekule structures. 
Starting with the algorithm proposed by Gordon & Davison [8], many papers have 
appeared on the problem of finding the "Kekule structure count" K for such 
hydrocarbons. We can mention here only a few authors who contributed to this 
topic: Balaban & Tomescu [1, 2, 3, 4], Gutman [10, 11, 12], Herndon [13], 
Hosoya [12, 14], Sachs [16], Trinajstic [17], Farrell & Wahid [6], Fu-ji & 
Rong-si [8], Artemi [1], Yamaguchi [14]. A whole recent book [5] is devoted to 
Kekule structures in benzenoid hydrocarbons. 

In this paper we consider only undirected graphs comprised of 6-cycles. Let 
there be a total of m such cycles, which we shall denote as C^, L/2j ..., u777 in 
each graph of interest. Because the problem we treat arises from chemical 
studies of certain hydrocarbon molecules, we impose upon C\, C<2_> >••, Cm the 
following conditions to reflect the underlying chemistry: 

(i) Every C^ and Q+i shall have a common edge denoted by g^, 
for all 1 < i < m - 1. 

(ii) The edges e^ and ej shall have no common vertex for any 
1 < i < j < m - 1. 

Representing the 6-cycles as regular hexagons in the plane results in a 
graph such as that illustrated in Figures 1(a) and 1(b). In organic chemistry, 
such graphs correspond to benzenoid chains (each vertex represents a carbon 
atom or CH group, and no carbon atom is common to more than two 6-cycles). 

(b) 
FIGURE 1 

2. Definitions and Notation 

By L(xi, x2> •••> xn) » w e denote a benzenoid chain (i.e., a corresponding 
graph) composed from n linearly condensed portions (segments) consisting of 
Xi, X2* «..J xn hexagons, respectively. Figures 1(a) and 1(b) show L(3, 4, 2, 
2, 5, 2) and L(4, 3, 5, 2, 2, 3, 4), respectively. 

Any two adjacent linear segments are considered as having a common hexagon. 
The common hexagon of two adjacent linear segments is called a "kink." The 
chain L(xn, x^* -..5 xn) has exactly n - 1 kinks. So the total number of 
hexagons in L(x1? x<i> •••* xn) is m = Xi + x2 + • • • + xn - n + 1. Observe that 
such notation implies x^ > 2, for i = l , 2 , . . . , n . 

(a) 
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We adopt the following notat ion: 
Kn(xi, x2, •••» xn) i s t n e number of Kekule* s t ruc tures 
(perfect mathcings) of L{x\9 x2> • ••> xn). 
F^ i s the i t h Fibonacci number, defined as follows: 
F_2 = 1, F.l = 0; Fk = Fk_! + i^_ 2 , for k > 0. 

For a l l other de f in i t ions , see [5] . 

3. Recurrence Relation and Algebraic Expression for K n (x 1 , x2 , . . . , xn) 

It is easy to deduce the K formula for a single linear chain (polyacene) of 
Xi hexagons, say L(xi) (see [5]): 

(1) #!(*!) = 1 + *!• 

We define 

(2) Z0 = 1. 

It may be interpreted as the number of Kekule structures for "no hexagons." 

Theorem 1: If n > 2, then, for arbitrary Xi > I, x2 > 1> ...,-#„> 1, the fol-
lowing recurrence relation holds: 

\J) Kn \X± , . . . , Xn- i , Xn) — Xn&n- ]_ \X]_ , . . . , Xn _ ]_ — ly 

+ Zn_2(xl5 ..., ̂ n_2 - 1). 

Proof: Let # be the last kink of L(xi, x2, •••» #n) • W e apply the fundamental 
theorem for matching polynomials [7]. 

Let u and V be the vertices belonging only to hexagon (kink) H (Figure 2) . 
Consider any perfect matching which contains the bond uv. The rest of such a 
perfect matching will be a perfect matching of the graph consisting of two 
components L(xn - 1) and L(xi> x2, . .., xn-\ - 1). The number of such perfect 
matchings is 

Ki(xn - 1) • Kn_l(x1, x2, . . . , xn-\- D» 

i . e . , according to (1) , 

(4) xnKn-l(xi, x2, . . . , xn_! - 1). 

FIGURE 2 

On the other hand, each perfect matching without the bond uv must contain 
all edges indicated in Figure 3. The rest of such a perfect matching will be a 
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perfect matching of L(xls x2$ . . ., xn_2 - 1)* the number of such perfect match-
ing being 

(5) Kn_2(xl> x2> •••» xn-2 " 1)• 

FIGURE 3 

From (4) and (5), we obtain recurrence relation (3). • 

Obviously, Kn(xi, x2, >>>> xn) is a polynomial of the form 

(6) Kn(x\> ..., xn) = gn + X Pn^i* •••» lv^xix -" xh-
l <lY <lz < • • • <lv <n 

Clearly, g0 = 1.
 l'?~n 

Now, we are going to determine the coefficients gn and gn(l\> ...» &p)• 
First, we define an auxiliary polynomial 

For example, we have: 

(8) $0 = 1, Qi(xi) = xi, Q2(xls xi) = 1 - #i + xYx2. 
From (3) and (7), we obtain the recurrence relation 

tyn\Xi , . . . , Xn _ i , X Yi -T L ) — Xntyn- i \X± , . . . , X ^ _ ]_ ) 

+ Qn.2(xl9 • • • > ^n-2)» 

. , Xn-i, Xn) — \Xn — i) Hn-1 v* l̂ » . . . J ^ n - 1 / 

., #n) = Sn + 2^ ^MV^IJ ..., ^ p ) ^ ^ ••• ^£p • 
1 <ll <l2< • • • < lp <n 

I <p <n 

Now, we are going to determine the coefficients £„(&]_, ..., £p) and 5W, for 
n > 1. 

First, we prove the following lemmas. 

Lemma 1: Sn = (-l)nFn_2. 

Proof: The proof will be by induction on n. According to (8), 

SQ = 1 = (-1)0F_2, 5 X - 0 = (-l)1*7-!. 

Suppose that 5^ = (-l)z Fi-2, for i < k. Then, according to (9), 

i.e. , 

(9) 

Let 

(10) 

Clearly: 

Qn(xl> 

Qn(xl> 

9 SQ = 

Sk-i + S-k-2> 
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and by the i n d u c t i o n h y p o t h e s i s , 
sk = - ( - D ^ F f c - a + {-\)k^Fk.h 

= ( - l ) f c - 2 ( ^ _ 3 + Fk^) = (-DkFk_2. D 

Lemma 2 (a): 
(11) Sn(Z1, . . . , Ap_l» lv) = (-lf~lvFn_lpSlp_l(ll, . . , , i p . i ) , fo r p > 1. 

(b): 

d2) snao = (-Dn- i i^. ,1s£ l -1 . 
Proof: I t s u f f i c e s t o prove ( a ) , s i n c e (b) i s a p a r t i c u l a r case of (a) . The 
proof w i l l be by i n d u c t i o n on n - lp. 

I f n - lp = 0 (lp = ri) , t h e n , accord ing to ( 9 ) , 

(13) Sn(ll, . . . , Hp_l9 lp) = ^^-1CA!, . . . , ip-i) 

= (-l)n-nFn_nSn_l(SLl, . . . , £ p _ i ) . 

If n - £p = 1 (£p = n - I), then, using (9) and (13), we have: 

Sn(li, ..., ip) = -Sn-i(&i, ..., £p) 

= Sn.1(lli ..., £p_x) = (-l)1F16'n_2(£1, ..., £p_i). 

Suppose that (11) is true for n - lp < k (lp > n - k ) , n - l > k > 2 . Then, 
for n - lp = k(lp = n - k), according to (9), 

Sn(li, ..., £p) = -Sn_i(li, ..., lp) +5n_2(^i> •••> &p)» 

and, by the i n d u c t i o n h y p o t h e s i s , 

S „ U l f . . . , *p) - - ( - l ) " " 1 " ^ - ! - ^ . ^ * ! , . . . . £p-l> 

+ ( - l ) " - 2 - 1 ^ . ^ ^ . ^ * ! , . . . . Ap_!) 
= {-l)n-i'P{Fn_l_lp + Fn_2.h)Slp_i{ll, . . . , * p _ l ) 

- ( - D " " ^ - ^ . ^ ! , •••> Ap- l ) - D 
Lemma 3: SnUlt . . . , ip) = (-l)n'pFn _ £ / I p _ V l _x . . . ^ - ^ - 1 * ^ - 3 . for p > 1. 
Proof: For p = 1, i t f o l l o w s , from (12) and Lemma 1, t h a t 

snao - ( - D ^ V , ^ ^ = (-D""*1*'„-11(-i)*1"1*V3 
- (-l)"-1Fn.4lF,l_3. 

For 1 < p < n, according to Lemmas 1 and 2, 

S „ ( V ..., ip.!, £p) = (-l)'I-^Fn.£?5£p.1(£1, ..., £p_!), 

and now, by induction, 

Lemma 4(a): gn = ( - l ) * ! ^ , 

(b): gnUi, . . . . M ' - ^ ' ^ . ^ ^ - t p , - ! ' " V * i - A ~ 3 -
Proof: According to ( 7 ) , 

S n ( # l s . . . s «„_!» ^ n + 1) = Kh(xl9 . . . , ^ n _ 1 5 # « ) - . -
Hence, 
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(Sn{%i, . . . , lv) , i f £p = n , 
(U) 9rndi> •••> V = ^ , 

{Sn(ils . . . , ilp) + £ n ( £ 1 ? . . . , £ p s n ) , i f ip < n . 
P a r t i c u l a r l y , we have 
(15) gn = Sn + Sn(n)s fo r n > 1. 
Now, from (15), Lemma 1, and Lemma 3, we have 

J7n = (-1) Fn_2 + ( - l ) » - l F „ _ 3 = ( - l ) n ( ^ n _ 2 - F„_ 3 ) = ( - l ) n F „ _ 4 , 
and (a) i s proved. 

To prove (b), observe that, for lp = n, 

(16) gnal9 ..., AP) = ^ U i 5 ..., Ap) = (-l)n-^£p _£p_x _, ... F£2_£i_1F£i_3, 

and, for lp < n9 

gnai, . . . , £P) = 5 n ( £ l s . . . , £p) + S „ U i , . . . , £p5 n) 

= (-1)* ̂ -Ap^p-Ap^-x --- ̂ £2-£l _/£l _3 
+ (-l)n-p-lFn_h_lFip_lp_i_l ... Fj,2_£i_1F£l_3 

= ("Dn (̂ n-£P ~ ̂ n-Jlp-P^p-Ap.! -1 ••• Fl2-ll-lFl1-3> 
i.e. , 

(17) gn{lx, ..., Ap) = (-l)"~PVlp-2*VVi-l ... ^ . ^ . ^ ^ . 3 . 

Taking into account that, for ip = n3 Fn_z _2 = F-z = 1> (16) and (17) can be 
written together in the form 

(18) gnai, .... Ap) = (-l)n"P^-lp-2^p-Vl-l ••• ̂ 2-^-1^1-3-

Theorem 2: Zn(^1, ..., xn) 

1 < £ x < . . . < ip <n
 n L p 

1 <p <n 

where gn(l\9 . . .> &p) i s g iven by ( 1 8 ) . 
Proof: Follows from Lemma 4. • 
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