SEQUENCES OF INTEGERS SATISFYING RECURRENCE RELATIONS

Richard André-Jeannin

Ecole Nationale d'Ingénieurs de Sfax, Tunisia
(Submitted July 1989)
Let us consider the recurrence relation

$$
\begin{equation*}
n^{3} u_{n}-\left(34 n^{3}-51 n^{2}+27 n-5\right) u_{n-1}+(n-1)^{3} u_{n-2}=0 \tag{1}
\end{equation*}
$$

Apery has proved that for $\left(u_{0}, u_{1}\right)=(1,5)$ all of the u_{n} 's are integers, and it is proved in [1] and [2] that, if all the numbers of a sequence satisfying (1) are integers, then $\left(u_{0}, u_{1}\right)=\lambda(1,5)$, where λ is an integer. We give here a generalization of this result, with a simple proof, and applications to Apery's numbers as well as to the recurrence relation

$$
\begin{equation*}
L_{n-1} F_{n} u_{n}-5 F_{n} F_{n-1} F_{2 n-1} u_{n-1}-F_{n-1} L_{n} u_{n-2}=0, \tag{2}
\end{equation*}
$$

where F_{n}, L_{n} are the usual Fibonacci and Lucas numbers.

1. The Main Result

Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ be two sequences of rational numbers with $\left\{u_{n}\right\}$ the sequence defined by $\left(u_{0}, u_{1}\right)$ and the recurrence relation

$$
\begin{equation*}
u_{n}=a_{n} u_{n-1}+b_{n} u_{n-2}, n \geq 2 . \tag{3}
\end{equation*}
$$

We then have two results.
Theorem 1: Suppose that
a) For all integers $n \geq 2, b_{n} \neq 0$.

$$
\begin{equation*}
\text { b) There exists a real number } P \text { such that } \lim _{n \rightarrow \infty} \prod_{k=2}^{n}\left|b_{k}\right|=P \text {. } \tag{4}
\end{equation*}
$$

Then the recurrence relation (3) has two linearly independent integer solutions only if $\left|b_{n}\right|=1$ for all large n.
THeorem 2: Suppose that
a) For all $n \geq 2, b_{n} \neq 0$ and $\left|b_{n}\right|=1$ for all large n.
b) For all $n \geq 2, a_{n} \neq 0$ and $\lim _{n \rightarrow \infty}\left|a_{n}\right|=a$.

Then relation (3) has two linearly independent integer solutions only if $\alpha_{n}=\alpha$ for all large n, where α is an integer different from zero.
Remark: Recall that two sequences $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are linearly dependent if two numbers (λ, μ) exist (not both zero) such that, for all n,

$$
\lambda p_{n}+\mu q_{n}=0 .
$$

In the other case, the sequences are linearly independent. It is easy to prove that $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$, when satisfying (3), are linearly dependent if and only if

$$
\begin{equation*}
p_{0} q_{1}-p_{1} q_{0}=0 \tag{8}
\end{equation*}
$$

2. Proof of Theorem 1

Let us suppose that $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are two independent integer solutions of (3) and define the sequence Δ_{n} by

$$
\begin{equation*}
\Delta_{n}=p_{n-1} q_{n}-p_{n} q_{n-1}, n \geq 1 \tag{9}
\end{equation*}
$$

It is easily proved that

$$
\begin{equation*}
\Delta_{n}=-b_{n} \Delta_{n-1}, n \geq 2 \tag{10}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\Delta_{n}=(-1)^{n-1} b_{2} \ldots b_{n} \Delta_{1}, n \geq 2 \tag{11}
\end{equation*}
$$

By the Remark above, $\Delta_{1}=p_{0} q_{1}-p_{1} q_{0} \neq 0$, and by (5) we have
(12) $\quad \lim _{n \rightarrow \infty}\left|\Delta_{n}\right|=\left|\Delta_{1}\right| P$;
thus, the sequence of integers $\left|\Delta_{n}\right|$ converges and we deduce from (12) that
(13) $\left|\Delta_{n}\right|=\left|\Delta_{1}\right| P$, for all large n.

By (11) we have $\Delta_{n} \neq 0$ for all n (since $b_{n} \neq 0$ and $\Delta_{1} \neq 0$). Hence, (13) shows that $P \neq 0$. By (10) we have

$$
1=\frac{\left|\Delta_{n}\right|}{\left|\Delta_{n-1}\right|}=\left|b_{n}\right| \text {, for all large } n .
$$

This concludes the proof of Theorem 1.

3. Proof of Theorem 2

Suppose that $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are two independent integer solutions of (3) and define the sequence D_{n} of integers by

$$
D_{n}=p_{n-2} q_{n}-p_{n} q_{n-2}, n \geq 2 .
$$

It is obvious that
(14) $\quad D_{n}=a_{n} \Delta_{n-1}, n \geq 2$.

However, by (6) we have, for n large, since $\left|b_{n}\right|=1$,

$$
\left|\Delta_{n}\right|=\left|\Delta_{1}\right| P \neq 0 .
$$

Hence,

$$
\begin{equation*}
\left|D_{n}\right|=\left|a_{n}\right|\left|\Delta_{1}\right| P \neq 0, \text { for all large } n, \tag{15}
\end{equation*}
$$

and by (7),

$$
\lim _{n \rightarrow \infty}\left|D_{n}\right|=a\left|\Delta_{1}\right| P .
$$

Thus, for all large n,

$$
\begin{equation*}
\left|D_{n}\right|=a\left|\Delta_{1}\right| P \tag{16}
\end{equation*}
$$

Note that $\alpha \neq 0$, since $D_{n} \neq 0$, and that α is a rational number by (16). Comparison of (15) and (16) shows that

$$
\left|a_{n}\right|=\alpha, \text { for all large } n
$$

Let us now write $\alpha=p / q$, where p and q are relatively prime integers. Without loss of generality, we can assume that

$$
\begin{equation*}
u_{n}= \pm \frac{p}{q} u_{n-1} \pm u_{n-2}, \text { for } n \geq 2 \tag{17}
\end{equation*}
$$

Consider the solution $\left\{v_{n}\right\}$ of (17) defined by the initial values $(0,1)$. Note that $\Delta_{1} v_{n}$ is an integer, namely,

$$
\Delta_{1} v_{n}=-q_{0} p_{n}+p_{0} q_{n}
$$

The relation

$$
\Delta_{1} v_{n}= \pm \frac{p}{q} \Delta_{1} v_{n-1} \pm \Delta_{1} v_{n-2}
$$

shows that

$$
q \mid \Delta_{1} v_{n-1}, \text { for } n \geq 2
$$

By mathematical induction, it is easy to prove that for all integers $m \geq 1$ and $n \geq 1, q^{m} \mid \Delta_{1} v_{n}$. Therefore, $q=1$, and a is an integer.

4. Application

Suppose that $\left|b_{n}\right|=C_{n-1} / C_{n}$, with $C_{n} \neq 0$ for all $n, C_{n} \neq C_{n-1}$, and

$$
\lim _{n \rightarrow \infty} C_{n}=C
$$

We can then write

$$
\prod_{k=2}^{n}\left|b_{k}\right|=\frac{C_{1}}{C_{n}}, \text { so that } P=\frac{C_{1}}{C}
$$

By Theorem 1, the sequence (3) cannot have two linearly independent solutions, since $\left|b_{n}\right| \neq 1$.

This result can be applied to (1) with $C_{n}=n^{3}$, and also to the recurrences

$$
\begin{equation*}
n u_{n}-(2 m+1)(2 n-1) u_{n-1}+(n-1) u_{n-2}=0 \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
n^{2} u_{n}-\left(11 n^{2}-11 n+3\right) u_{n-1}-(n-1)^{2} u_{n-2}=0 \tag{19}
\end{equation*}
$$

with $C_{n}=n$ in (18), $C_{n}=n^{2}$ in (19). Note that (18) and (19) admit integer solutions defined by the initial values ($1,2 m+1$) [resp. (1,3)]. The integer solution of (18) is simply $u_{n}=P_{n}(-m)$, where

$$
P_{n}(x)=\frac{1}{n!} \frac{d^{n}}{d x^{n}}\left[x^{n}(1-x)^{n}\right]=\prod_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}(-1)^{k} x^{k}
$$

is the $n^{\text {th }}$ Legendre polynomial over [0, 1] (see [3] for another proof). Equations (1) and (19) appear in Apery's proof of the irrationality of $\zeta(3)$ and $\zeta(2)$.

Now, let us consider recurrence (2), in which we have

$$
b_{n}=\frac{F_{n-1} L_{n}}{L_{n-1} F_{n}}
$$

Then

$$
\prod_{k=2}^{n} b_{k}=\frac{L_{n}}{F_{n}} \quad \text { and } \quad P=\lim _{n \rightarrow \infty} \frac{L_{n}}{F_{n}}=\sqrt{5}
$$

By Theorem 1, the sequence (2) cannot have two linearly independent integer solutions. it will be shown below (and in [4]) that the solution $\left\{q_{n}\right\}$ defined by the initial values (1, 0) is an integer sequence. On the other hand, the solution $\left\{p_{n}\right\}$ defined by the initial values $(0,1)$ cannot be an integer sequence. Let us write the first few values of these two sequences in order to see this. They are:

$$
\begin{array}{rrrrrrr}
n & 0 & 1 & 2 & 3 & 4 & 5
\end{array} \ldots
$$

It can also be shown that

$$
\lim _{n \rightarrow \infty} \frac{p_{n}}{q_{n}}=\sum_{k=1}^{\infty} \frac{1}{F_{k}}=3.35988566624 \ldots
$$

Notice how quickly p_{n} / q_{n} converges. We have

$$
\frac{p_{4}}{q_{4}}=3.3598856 \ldots \text { and } \quad \frac{p_{5}}{q_{5}}=3.35988566624 \ldots .
$$

One can deduce from this that $\sum_{k=1}^{\infty}\left(1 / F_{k}\right)$ is irrational (see [4]).

5. Generalization

Consider the recurring sequence defined by u_{0}, \ldots, u_{r-1} and

$$
\begin{equation*}
u_{n}=a_{n}^{1} u_{n-1}+a_{n}^{2} u_{n-2}+\cdots+a_{n}^{r} u_{n-r}, n \geq r \tag{20}
\end{equation*}
$$

where r is a strictly positive integer, and where $\left\{\alpha_{n}^{l}\right\}, \ldots,\left\{\alpha_{n}^{r}\right\}$ are sequences of rational numbers. By analogy with Theorem 1 , we have the following result.
Theorem 1': Suppose that
(a) For all $n \geq r, a_{n}^{r} \neq 0$.
(b) There exists a number P such that $\lim _{n \rightarrow \infty} \prod_{k=r}^{n}\left|\alpha_{k}^{r}\right|=P$.

Then (20) has r linearly independent integer solutions only if $\left|\alpha_{n}^{r}\right|=1$ for all large n.

Proof: Suppose that $\left\{p_{n}^{1}\right\}, \ldots,\left\{p_{n}^{r}\right\}$ are r linearly independent integer sequence solutions of (20) and define the sequence Δ_{n} of integers by $r \times r$ determinant

$$
\Delta_{n}=\left|P_{n-r+j}\right|_{\substack{1 \leq i \leq r \\ 1 \leq j \leq r}}, n \geq r-1
$$

It is easily proved that $\Delta_{n}=(-1)^{r-1} \alpha_{n} \Delta_{n-1}$. Hence,

$$
\left|\Delta_{n}\right|=\left|\Delta_{r-1}\right| \prod_{k=r}^{n}\left|a_{k}^{r}\right|, n \geq r .
$$

We have $\Delta_{r-1} \neq 0$, since the $\left\{p_{n}^{i}\right\}$'s are independent, and the end of the proof is as in Theorem 1 .

The reader can also find a theorem analogous to Theorem 2.

References

1. Y. Mimura. "Congruence Properties of Apery Numbers." J. Number Theory 16 (1983):138-46.
2. D. K. Chang. "A Note on Apery Numbers." Fibonacci Quarterly 22.2 (1984): 178-80.
3. D. K. Chang. "Recurrence Relations and Integer Sequences." Utilitas Mathematica 32 (1987):95-99.
4. R. André-Jeannin. "Irrationalité de la somme des inverses de certaines suites récurrentes." C. R. Acad. Sci. Paris t. 308, série I (1989):539-41.
