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Let us consider the recurrence relation 

(1) n3un - (34n3 - 51n2 + 27n - 5)un„l + (n - l)3un_2 = 0. 

Apery has proved that for (UQ, U^) = (1, 5) all of the un* s are integers, and 
it is proved in [1] and [2] that, if all the numbers of a sequence satisfying 
(1) are integers, then (UQ, U\) = X(l, 5), where X is an integer. We give here 
a generalization of this result, with a simple proof, and applications to 
Aperyfs numbers as well as to the recurrence relation 

(2) Ln_iFnun - 5FnFn-iF2n-iUn-i - i77n_1Lnun_2 = 0, 

where Fn, Ln are the usual Fibonacci and Lucas numbers. 

1. The Main Result 

Let {an}, {bn} be two sequences of rational numbers with {un} the sequence 
defined by (u$, U\) and the recurrence relation 

(3) un = anun-i + bnun..2> n > 2. 

We then have two results. 

Theorem 1: Suppose that 

(4) a) For all integers n > 2, bn * 0. 
n 

(5) b) There exists a real number P such that lim J~J \bk\ = P. 
n + co k = 2 

Then the recurrence relation (3) has two linearly independent integer solutions 
only if \bn\ = 1 for all large n. 
THeorem 2: Suppose that 

(6) a) For all n > 2, bn * 0 and \bn\ = 1 for all large n. 

(7) b) For all n > 2, an * 0 and lim|an| = a. 
n •> oo 

Then relation (3) has two linearly independent integer solutions only if an = a 
for all large n, where a is an integer different from zero. 

Remark: Recall that two sequences {pn} and {qn} are linearly dependent if two 
numbers (A, u) exist (not both zero) such that, for all n, 

*-Pn + vqn = 0. 

In the other case, the sequences are linearly independent. It is easy to prove 
that {p7 } and {qn}, when satisfying (3), are linearly dependent if and only if 

(8) P0ql ~ P^Q = 0. 

2. Proof of Theorem 1 

Let us suppose that {pnl and iqn} are two independent integer solutions of 
(3) and define the sequence An by 

(9) An = Vn.i1n ~ Pn<ln-i> n > \. 
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I t i s e a s i l y proved t h a t 

(10 ) An = - £ n A n - l > n > 2 . 

H e n c e , 

( 1 1 ) An = ( - 1 ) ^ - ^ 2 . . . bnAl9 n > 2 . 

By t h e Remark a b o v e , A-, = p n ^ i ~ Pi<7o ^ ^ ' a n c * ^y (5 ) we h a v e 

(12) lim|A„| = I A J P ; 

thus, the sequence of integers |An| converges and we deduce from (12) that 

(13) | An | = |AX|P, for all large n. 

By (11) we have An * 0 for all n (since bn * 0 and A]_ * 0) . Hence, (13) shows 
that P * 0. By (10) we have 

|An| 
I = _̂  = &„ , for all large n. 

IA n _ !I 
This concludes the proof of Theorem 1. 

3. Proof of Theorem 2 

Suppose that {pn} and iqn} are two independent integer solutions of (3) and 
define the sequence Dn of integers by 

Dn = Pn-l^n ~ Pn^n-l' n > 1. 
It is obvious that 

(14) Dn = anA n_ l 5 n > 2. 

However, by (6) we have, for n large, since |2?„| = 1, 

|An| = |Ax \P * 0. 

Hence, 

(15) \Dn\ = |a„||A1|P * 0, for all large n, 

and by (7), 

lim|P„ | = a | A]_ |P. 

Thus, for all large n, 

(16) |Pn| = a|Ax|P. 

Note that a * 0, since Dn * 0, and that a is a rational number by (16). Com-
parison of (15) and (16) shows that 

\an\ = a, for all large n, 

Let us now write a = p/q, where p and q are relatively prime integers. With-
out loss of generality, we can assume that 

p 
(17) un = ± — un-i ± un-2> for n > 2. 

Consider the solution ivn} of (17) defined by the initial values (0, 1). Note 
that AiVn is an integer, namely, 

The relation 
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shows that 

q\ hxvn_Y y £° r n > 2. 

By mathematical induction, it is easy to prove that for all integers m > 1 
and n > 1, qm\&iVn. Therefore, q = 1, and a is an integer. 

4. Application 

Suppose that \bn\ = Cn_l/Cn, with Cn * 0 for all n, Cn * Cn-l> and 

lim Cn = C. 

n+ oo 

We can then write 

k=2 k Cn C 

By Theorem 1, the sequence (3) cannot have two linearly independent solutions, 
since \bn\ * 1. 

This result can be applied to (1) with Cn = n3, and also to the recurrences 

(18) nun - (2m + 1)(2n - l)wn-i + (n - l)wn_2 = 0, 

and 

(19) n2un - (lln2 - lln + 3)un_x - (n - l)2un_2 = 0, 

with Cn = n in (18), Cn = n2 in (19). Note that (18) and (19) admit integer 
solutions defined by the initial values (1, 2m + 1) [resp. (1, 3)]. The inte-
ger solution of (18) is simply un = Pn (-m), where 

_L i!_r,nn _ ^ m _ n ln\(n + k\r-i)kxk p , w = ^ ^ ( i - . ) ^ ] % n ( ^ ) ( n r ) ( - i ) 

is the nth Legendre polynomial over [0, 1] (see [3] for another proof). Equa-
tions (1) and (19) appear in Apery's proof of the irrationality of £(3) and 
C(2). 

Now, let us consider recurrence (2), in which we have 

=
 Fn-lLn 

Ln-lF
n' 

Then 
n T T 
1~T ^n J-Jn /— 
J 1 bk = — and P = lim — = /5. 

By Theorem 1, the sequence (2) cannot have two linearly independent integer 
solutions. it will be shown below (and in [4]) that the solution {qn} defined 
by the initial values (1, 0) is an integer sequence. On the other hand, the 
solution {pn} defined by the initial values (0, 1) cannot be an integer 
sequence. Let us write the first few values of these two sequences in order to 
see this. They are: 

n 

Pn 

qn 

It can also 

lim 
n> oo 

0 

0 

1 

be 

Pn 
$n 

1 

1 

0 

shown 

= E 
k = l 

2 

10 

3 

that 

1 

3 

84 

25 

4 

8225 
3 

816 

5 

999146 
5 

59475 

3.35988566624... . 
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Not ice how qu ick ly p /q conve rges . We have 

— = 3 . 3 5 9 8 8 5 6 . . . and — = 3 . 3 5 9 8 8 5 6 6 6 2 4 . . . . 

One can deduce from t h i s t h a t S , ( 1 / i ^ ) i s i r r a t i o n a l (see [ 4 ] ) , 

5. Genera l iza t ion 

Consider the recurring sequence defined by uQ9 ..., ur_-, and 

(20) un = a\un_l + a\un_1 + ... + a%un_p, n > r, 

where r is a strictly positive integer, and where {a^}, . .., {a^} are sequences 
of rational numbers. By analogy with Theorem 1, we have the following result. 

Theorem 1': Suppose that 

(a) For all n > r, al * 0. 
n 

(b) There exists a number P such that lim f\ IalI = P-
n + ™ k = r 

Then (20) has r linearly independent integer solutions only if \ar^\ = 1 for all 
large n. 
Proof: Suppose that {p1}, ..., {pri are r linearly independent integer sequence 
solutions of (20) and define the sequence An of integers by r x r determinant 

&n = \vn-T+i\, • > n > r - I. 

It is easily proved that An = (-l)r~lankn-\. Hence, 
n 

Kl = lAr-l| I! Wl\> n > V. 
k = v 

We have kv-\ * 0, since the {pt}'s are independent, and the end of the proof is 
as in Theorem 1. 

The reader can also find a theorem analogous to Theorem 2. 
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