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BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln9 sat isfy 

Fn+2 = Fn+l + Fn> F0 = °> ^1 = ^ 
Fn + 2 = Fn + 1 + Fn> F0 = 2> ^1 = l o 

Also, a = (1 + / 5 ) /2 , 3 = (1 - / 5 ) /2 , Fn = (an - 3 n ) / /5 5 and Ln = an + 3 n . 

PROBLEMS PROPOSED IN THIS ISSUE 

B-694 Proposed by Sahib Singh, Clarion U. of Pennsylvania, Clarion, PA 

Prove that L2„ E 7 (mod 40) for n > 2. 

B-695 Proposed by Russell Euler, Northwest Missouri State U., Maryville, MO 

Define the sequences {Pn} and {Qn) by 

P0 = 0, P1 = 1, Pn+2 = 2Pn+1 + Pn for n > 0 
and 

QQ = 1 , Ql = 1 , Qn + 2 = 2Qn + l + Qn for n > 0. 

Find a simple formula expressing Qn in terms of Pn . 

B-896 Proposed by Herta T. Freitag, Roanoke, VA 

Let (a , b, c) be a Pythagorean t r i p l e with the hypotenuse c = 5F2n + 3 and 
a = L2n+3 + 4 ( - l ) M + 1 . 

(a) Determine b. 
(b) For what values of n , if any, i s the t r i p l e primitive? [The elements 

of a primitive t r i p l e have no common fac tor . ] 

B-697 Proposed by Richard Andre-Jeannin, Sfax, Tunisia 

Find a closed form for the sum 

n nk-\ 

k= l 
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where Wn * 0 for a l l n and wn = pwn„i - qwn„2
 f o r n > 2, with p and q nonzero 

constants . 

B-698 Proposed by Richard Andre-Jeannin, Sfax, Tunisia 

Consider the sequence of r ea l numbers a^, a^* . ..> where a-^ > 2 and 
an + l = al - 2 for w > 1. 

Find lim Z?n, where 
. _ " n + 1 for n > 1. 

B-699 Proposed by Larry Blaine, Plymouth State College, Plymouth, NH 

Let a be an integer greater than 1. Define a function p(n) by 

p( l ) = a - 1 and p(n) = an - 1 - £ p(d) for n > 2, 

where X denotes the sum over a l l <i with 1 < d < n and c?|n. 
Prove or disprove that n\p(n) for a l l posi t ive integers n. 

SOLUTIONS 
edited by A. P. Hillman 

Application of Generating Functions 

B-670 Proposed by Russell Euler, Northwest Missouri State U. , Maryville, MO 
M nFn Evaluate £ — r . 

n= 1 z 

Solution by Russell Jay Hendel, Bowling College, Oakdale, NY 

The generating function 

F(x) = "£Fnxn = - " ^ T f 7 
£rz + a; - 1 

has radius of convergence a-1. Differentiating both sides with respect to x 
and then multiplying by x gives: 

JT nFnxn = F{x) + (F(x))2(2x + 1) , for |^ | < a"1. 
n= 1 

Therefore, l e t t i n g x = .5 in the l a s t equations we find 

E ruj- n 
n = l Z 

AZso solved by Richard Andre-Jeannin, Barry Booton, Paul S. Bruckman, Joe 
Howard, Hans Kappus, Joseph J. Kostal, Y. H, Harris Kwong, Alex Necochea, 
Bob Prielipp, Don Redmond, H.-J. Seiffert, Sahib Singh, Lawrence Somer, and 
the proposer. 

Even Perfect Numbers Are Hexagonal and Triangular 

B-671 Proposed by Herta T. Freitag, Roanoke, VA 

Show that a l l even perfect numbers are hexagonal and hence are a l l t r i a n -
gular. [A perfect number i s a posi t ive integer which i s the sum of i t s proper 
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posi t ive integral d iv isors . The hexagonal numbers are {1, 6, 15, 28, 45, . . . } 
and the tr iangular numbers are {1, 3, 6, 10, 15, . . . } . ] 

Solution by Y. H. Harris Kwong, SUNY College at Fredonia, Fredonia, NY 

The formulas for the kth t r iangular number Tk and the kth hexagonal number 
H^ are 

Tk = ^ 2 ^ a n d Hk = k(2k ~ 1) = T2k-1* 

respectively. It is well known that every even perfect number n is of the form 
n = 2P-1(2? - 1), 

where 2P - 1 is prime; so n i s the (2P_1)th hexagonal number, which is also t r i -
angular . 

Also solved by Richard Andre-Jeannin, Charles Ashbacher, Paul S. Bruckman, 
Russell Euler, Russell Jay Hendel, L. Kuipers, Bob Prielipp, H.-J. Seiffert, 
Sahib Singh, Lawrence Somer, and the proposer, 

Proposal in 10*199, Solution in 11*181 

6-872 Proposed by Philip L. Mana, Albuquerque, NM 

Let S consist of a l l posi t ive integers n such that n ~ lOp and n + 1 = \\q* 
with p and q primes. What i s the largest posit ive integer d such that every n 
in S i s a term in an arithmetic progression a, a + J , a + 2d9 . . . ? 

Solution by Richard Andre-Jeannin, Sfax, Tunisia 

Let n be a member of S. I t is clear that 11(q - 1) = 10(p - 1); hence, 

p = l l r + 1 and q = lOr + 1. 

Since p, q are prime numbers, i t is easi ly proved that v i s even and i1 = 0 
(mod 3) . Hence, r = 6s, p = 66s + 1, ^ = 60s + 1, and the members of S are 
terms in the ari thmetical progression us = 660s + 10. 

Now we have 

u1Q = 10 • 661, ulQ + 1 = 11 • 601, 
and 

ull = 10 • 727, ull + 1 = 11 • 661; 

hence, w10 and u, , are members of 5, and the largest d such that every n In S 
is in an ari thmetical progression is d = 660. 

Also solved by Charles Ashbacher, Paul S. Bruckman, Y. H. Harris Kwong, 
Bob Prielipp, H.-J. Seiffert, Sahib Singh, Lawrence Somer, and the proposer. 

Fibonacci Infinite Product 

B-673 Proposed by Paul S. Bruckman, Edmonds, WA 

Evaluate the in f in i te product jJ . 
n = 2 î 2n ~ 1 

Solution by Joseph J. Kostal, U. of Illinois at Chicago, IL 
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- F2n + 1 = - /Fi+n + 1 | Fhn + 2 + 1 

n=2F2n " * n=lKFhn " *- ^Vn + 2 " 1 

FT ( ^ 2 n " l L 2 n + 1 . F2-n + 2.LZn\ 
n= 1 ^ F 2 n + l L 2 n - l F2nL2n + l ' 

ff (F2n'lFzn + : 

J 2 n - 1 ^ 2 n + 2 

w = l ^ 2 n ^ 2 n + l n = \ lj2n - lLj2n + 2 

= î ^ = I 1 = o 
F2' L1 1 ' 1 

AZso so lved by K. Andre-Jeannin, Bob Prielipp, H.-J. Seiffert, and the 
proposer. 

Tr igonomet r i c R e c u r s i o n 

B-674 Proposed by Richard Andre-Jeannin, Sfax, Tunisia 

Define the sequence {un} by 

u0 = 0, u\ = 1, un = gun-i - un-2, for n i n {2, 3 , . . . } , 
where g i s a r o o t of x 2 - x - 1 = 0. Compute wn for n i n {2, 3 , 4 , 5} and then 
deduce t h a t (1 + / 5 ) / 2 = 2 COS(TT/5) and (1 - / 5 ) / 2 = 2 C O S ( 3 T T / 5 ) . 

Solution by Paul S. Bruckman, Edmonds, WA 

Since g satisfies the equation 

(1) g1 = g + 1, 

we have 

(2) g = a = |(1 + /5) or # = 3 = f(l - /5) . 

The characteristic equation of the given recurrence is 

(3) z2 - gz + 1 = 0, 

which has roots Z\ and z2 given by 

(4) zY = \{g + (g2 - 4)1/2), z2 = \{g - (g2 - 4)1/2) . 

Making the substitution g = 2 cos 0, we may express the roots in (4) as follows: 

(5) Zi = exp(i6), £2 = exp(-i8). 

From the initial conditions, we find that we may express un in the following 
Binet form: 

zn - zn 

(6) un = -1 -^, n = 0, 1, 2, ... . 
sl ~ z2 

Equivalently, using (5), we obtain 
/-7\ s i - n ^ 6 i 
(7) Un = sin 6 ' U = °' ls 2' '•' " 

Using (1) and the given recurrence, we find the following values: 

uz = g • 1 - 0 = g; u3 = g • g - 1 = g; uh = g • g - g = 1; 
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u5 = g * i ~ g = 0; u6 = g* 0 - 1 = -1; u? = g(-l) - 0 = -g, etc. 

Clearly, from (2), g * ±2; hence, 6 * mir, and sin 6 * 0* Since 

w5 = sin 59/sin 8 = 0, 

we see t h a t 6 = rm\ / 5 for some i n t e g e r m, not a m u l t i p l e of 5 , We may r e s t r i c t 
m to t he r e s i d u e s (mod 10 ) , s i n c e 100 = 2rmr» A l so , 

u2 = 2 cos 0, u7 = s i n ( 2 0 + rtm) /sin 0 - ( - l ) ' 7 ?s in 2 0 / s i n 0 = (-l)mu2-

However, as we have seen , u-y = -u2 ; t h e r e f o r e , 77? must be odd. Moreover, s i n c e 
COS(2TT - 0) = cos 0, we may e l i m i n a t e the v a l u e s m = 1 and 9. The re fo re , m = 1 
or 3 . Then, a and 3 must be equa l to 2 cos TT/5 and 2 cos 3TT/5, i n some o r d e r . 
C l e a r l y , a > 0 and 3 < 0; a l s o , 2 cos TT/5 > 0 and 2 cos 3TT/5 < 0. The re fo re , 

(8) a = 2 cos TT/5, 3 = 2 cos 3TT/5. 

Also solved by Herta T. Freitag, Hans Kappus, L. Kuipers, and the proposer. 

Another Sine Recursion 

6-675 Proposed by Richard And.re-Jeannin, Sfax, Tunisia 

In a manner analogous to t h a t for the p rev ious problem, show t h a t 

V2 + /2 = 2 cos -zr and /2 - /2 = 2 cos -5- . o o 
Solution by Paul S. Bruckman, Edmonds, WA 

We have the same c h a r a c t e r i s t i c equa t ion for z and the same s u b s t i t u t i o n s 
as i n B-674; however, i n t h i s c a s e , g s a t i s f i e s the equa t ion 

(i) gh = ^g2 - 2. 
In this case, we may obtain the following values: 

u2 = g, u3 = g2 - 1, uh = g3 - 2g, u5 = ̂  - 3g2 + 1 = #2 - 1, 
w6 ~ Q* ul ~ 1» w8 = 0, W9 = -1, W]_Q - ~^3 etc. 

As before, 

(2) un = sin n0/sin 0, n = 0, 1, 2, ..., where ^ = 2 cos 0. 

Again, we note that g * ±2, so sin 0 ^ 0 . Since UQ = 0, therefore 80 = mu, or 
0 = OTTT/8, for some integer 77? (not a multiple of 8). We see, from above, that 

w 1 0 = s i n ( 2 0 + /7?Tr)/sin 0 = (™l) m w 2 ; 

hence, m must be odd. Again, we may restrict m to the residues of the period, 
in this case, mod 16; moreover, we may eliminate the values m - 9, 11, 13, and 
15, since COS(2TT - 0) = cos 0. Therefore, we may restrict 777 to the values 
m = 1, 3, 5, or 7. The roots of (1) are given by ±/2 + /2 and ±/2 - /2; thus, 
these must be equal to 2 cos 77771/8, m = 1, 3, 5, 7, in some order. Since 

— 7T < 777TT/8 < IT, f o r 777 = 5 Or 7 , 

it is clear that the positive roots (which are the ones we are interested in) 
are generated by 777 = 1 or 3. Also, cos x decreases over the interval [0, %TT], 
from which it follows that 
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2 cos TT/8 = i l + / 2 5 2 cos 3TT/8 = fl - / 2 . 

Also solved by Herta T. Freitag, Hans Kappus, and the proposer. 
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