ENTRY POINT RECIPROCITY OF CHARACTERISTIC CONJUGATE GENERALIZED FIBONACCI SEQUENCES

David A. Englund
Belvidere, IL 61008
(Submitted July 1989)

Introduction

Given a pair of integers, A, B, such that $(A, B)=1$ and $0<A<\frac{1}{2} B$, we define a generalized Fibonacci sequence as follows:

$$
G_{0}=B-A, G_{1}=A, G_{n}=G_{n-1}+G_{n-2} \text { for } n \geq 2
$$

Terms with negative indices can also be defined by:

$$
G_{-n}=G_{2-n}-G_{1-n} \text { for } n \geq 1
$$

We say that
$\left|G_{1}^{2}-G_{0} G_{2}\right|=\left|A^{2}+A B-B^{2}\right|$
is the characteristic of $\left\{G_{n}\right\}$. In addition, we define a conjugate sequence $\left\{H_{n}\right\}$ by:
$H_{0}=B-A, H_{1}=B-2 A, H_{n}=H_{n-1}+H_{n-2}$ for $n \geq 2$.
It is easily seen that:

1. $G_{n}>0$ and $H_{n}>0$ for all $n \geq 0$;
2. $H_{n}=(-1)^{n} G_{-n}=\left|G_{-n}\right|$;
3. $\left\{G_{n}\right\}$ and $\left\{H_{n}\right\}$ have the same characteristic;
4. $\left\{G_{n}\right\}$ and $\left\{H_{n}\right\}$ are distinct unless $A=1, B=3$, in which case $G_{n}=H_{n}=$ L_{n} (the $n^{\text {th }}$ Lucas number; see [1]).
Let $\left\{T_{n}\right\}=\left\{G_{n}\right\}$ or $\left\{H_{n}\right\}$. If M is any positive integer, we say M enters $\left\{T_{n}\right\}$ if there exists $K>0$ such that $M \mid T_{K}$. The least such K will be called the entry point of M in $\left\{T_{n}\right\}$, and denoted $T(M)$. The entry point of M in the original Fibonacci sequence $\left\{F_{n}\right\}$ (which is guaranteed to exist) is denoted $Z(M)$. The entry point of M (if it exists) in $\left\{L_{n}\right\},\left\{G_{n}\right\},\left\{H_{n}\right\}$ will be denoted $L(M), G(M), H(M)$, respectively.

In this paper we prove the following theorems.
Theorem 1: If $M \mid G_{0}$, then M enters $\left\{G_{n}\right\}$ and $\left\{H_{n}\right\}$, and $G(M)=H(M)=Z(M)$.
Theorem 2: If $M \nmid G_{0}$ but M enters $\left\{G_{n}\right\}$, then M also enters $\left\{H_{n}\right\}$, and $G(M)+H(M)$ $=Z(M)$.

Theorem 2 may be considered an entry point reciprocity law. We will make use of the following identities.

$$
\begin{array}{ll}
(1) & T_{m+n}=F_{m-1} T_{n}+F_{m} T_{n+1} \\
(2) & G_{n}=F_{n-2} A+F_{n-1} B \\
\text { (3) } & H_{n}=-F_{n+2} A+F_{n+1} B \\
(4) & \left(T_{n}, T_{n+1}\right)=\left(F_{n}, F_{n+1}\right)=1 \\
(5) & F_{-n}=(-1)^{n-1} F_{n} \\
(6) & F_{m+n}=F_{m-1} F_{n}+F_{m} F_{n+1}
\end{array}
$$

The Main Results

Proof of Theorem 1: Since $G_{0}=H_{0}=B-A$, and $\left(G_{0}, G_{1}\right)=\left(H_{0}, H_{1}\right)=1$, it suffices to show that, if $\left\{T_{n}\right\}$ is a sequence such that $M \mid T_{0}$ and $\left(T_{0}, T_{1}\right)=1$, then M enters $\left\{T_{n}\right\}$ and $T(M)=Z(M)$. (1) implies $T_{K}=F_{K-1} T_{0}+F_{K} T_{1}$; therefore, hypothesis implies $T_{K} \equiv F_{K} T_{1}(\bmod M)$, so that

$$
T_{Z(M)} \equiv F_{Z(M)} T_{1} \equiv 0(\bmod M) .
$$

Thus, M enters $\left\{T_{n}\right\}$ and $T(M) \leq Z(M)$. Also

$$
F_{T(M)} T_{1} \equiv T_{T(M)} \equiv 0(\bmod M)
$$

But $\left(T_{0}, T_{1}\right)=1$, so $\left(M, T_{1}\right)=1$. Therefore, $F_{T(M)} \equiv 0(\bmod M)$. This implies $Z(M) \leq T(M)$, so $T(M)=Z(M)$.
Lemma 1: Let $\left\{T_{n}\right\}=\left\{G_{n}\right\}$ or $\left\{H_{n}\right\}$. If X is an integer such that $0<X<Z(M)$ and $T_{X} \equiv 0(\bmod M)$, then $X=T(M)$.
Proof: Hypothesis implies $T(M) \leq X$. Suppose $T(M)=Y<X$. (1) imp1ies

$$
T_{X}=T_{(X-Y)+Y}=F_{X-Y-1} T_{Y}+F_{X-Y} T_{Y+1} .
$$

Thus,

$$
T_{X} \equiv F_{X-Y-1} T_{Y}+F_{X-Y} T_{Y+1}(\bmod M)
$$

But hypothesis implies $T_{X} \equiv T_{Y} \equiv 0(\bmod M)$, so $E_{X-Y} T_{Y+1} \equiv 0(\bmod M)$. Hypothesis and (4) imply $\left(T_{Y}, T_{Y+1}\right)=1$, so that $\left(M, T_{Y+1}\right)=1$. Therefore, $F_{X-Y} \equiv 0$ $(\bmod M)$. But $0<X-Y<X<Z(M)$, which contradicts the definition of $Z(M)$. Hence, $T(M)=X$.
Proof of Theorem 2: Let $n=G(M)$. Hypothesis and (2) imply $F_{n-2} A+F_{n-1} B \equiv 0$ $(\bmod M)$. (3) implies

$$
H_{Z(M)-n}=-F_{Z(M)+2-n} A+F_{Z(M)+1-n} B .
$$

Now (6) implies
$F_{Z(M)+2-n}=F_{1-n} F_{Z(M)}+F_{2-n} F_{Z(M)+1} \equiv F_{2-n} F_{Z(M)+1} \equiv(-1)^{n-1} F_{n-2} F_{Z(M)+1}(\bmod M) ;$
$F_{Z(M)+1-n}=F_{-n} F_{Z(M)}+F_{1-n} F_{Z(M)+1} \equiv F_{1-n} F_{Z(M)+1} \equiv(-1)^{n} F_{n-1} F_{Z(M)+1}(\bmod M)$.
[The last steps involved use of (5).] Therefore,

$$
\begin{aligned}
H_{Z(M)-n} & \equiv(-1)^{n} F_{n-2} F_{Z(M)+1} A+(-1)^{n} F_{n-1} F_{Z(M)+1} B \\
& \equiv(-1)^{n} F_{Z(M)+1}\left(F_{n-2} A+F_{n-1} B\right) \equiv 0(\bmod M)
\end{aligned}
$$

Thus, by Lemma 1 ,

$$
H(M)=Z(M)-n=Z(M)-G(M) .
$$

Corollary 1: For $\left\{T_{n}\right\}$, if $T(M)$ exists, then $T(M) \leq Z(M)$; if $T(M)=Z(M)$, then $M \mid T_{0}$.

This follows from Theorems 1 and 2.
Corollary 2: If M enters $\left\{L_{n}\right\}$ and $M>2$, then $L(M)=\frac{1}{2} Z(M) ; L(2)=Z(2)=3$. Moreover, if $M>2$ and if $Z(M)$ is odd, then M does not enter $\left\{L_{n}\right\}$.
Proof: $2 \mid L_{0}$, so Theorem 1 implies $L(2)=Z(2)=3$. If $M>2$ and M enters $\left\{L_{n}\right\}$, then $M \nmid L_{0}$. Since $\left\{L_{n}\right\}$ is self-conjugate, Theorem 2 implies $2 L(M)=Z(M)$, so $L(M)=\frac{1}{2} Z(M)$. Hence, when $M>2, M$ enters $\left\{L_{n}\right\}$ only when $Z(M)$ is even.

The author wishes to thank the anonymous referee for his considerable assistance in the preparation of this article.

```
Reference
1. Charles H. King. "Conjugate Generalized Fibonacci Sequences." Fibonacci Quarterly 6.1 (1968):46-49.
```


Announcement

FIFTH INTERNATIONAL CONFERENCE ON FIBONACCI NUMBERS AND THEIR APPLICATIONS
Monday through Friday, July 20-24, 1992
Department of Mathematical and Computational Sciences
University of St. Andrews
St. Andrews KY16 9SS
Fife, Scotland

LOCAL COMMITTEE
Colin M. Campbell, Co-chairman
George M. Phillips, Co-chairman
Dorothy M.E. Foster
John H. McCabe
John J. O'Connor
Edmund F. Robertson

INTERNATIONAL COMMITTEE

A.F. Horadam (Australia), Co-chair	M. Johnson (U.S.A.)
A.N. Philippou (Cyprus), Co-chair	P. Kiss (Hungary)
S. Ando (Japan)	C.T. Long (U.S.A.)
G.E. Bergum (U.S.A.)	B.S. Popov (Yugoslavia)
P. Filipponi (Italy)	J. Turner (New Zealand)
H. Harborth (Germany)	M.E. Waddill (U.S.A.)

M. Johnson (U.S.A.)
P. Kiss (Hungary)
B.S. Popov (Yugoslavia)
J. Turner (New Zealand)
M.E. Waddill (U.S.A.)

LOCAL INFORMATION
For information on local housing, food, local tours, etc. please contact:
Dr. G.M. Phillips
Mathematical Institute
University of St. Andrews
North Haugh
ST. ANDREWS, Fife KY16 9SS
Scotland
CALL FOR PAPERS
The FIFTH INTERNATIONAL CONFERENCE ON FIBONACCI NUMBERS AND THEIR APPLICATIONS will take place at The University of St. Andrews, St. Andrews, Scotland from July 20 to July 24, 1992. This Conference is sponsored jointly by the Fibonacci Association and The University of St. Andrews.

Papers on all branches of mathematics and science related to the Fibonacci numbers as well as recurrences and their generalizations are welcome. Abstracts are to be submitted by March 15, 1992. Manuscripts are due by May 30, 1992. Abstracts and manuscripts should be sent in duplicate following the guidelines for submission of articles found on the inside front cover of any recent issue of The Fibonacci Quarterly to:

Professor Gerald E. Bergum
The Fibonacci Quarterly
Department of Computer Science, South Dakota State University
P.O. Box 2201, Brookings, South Dakota 57007-0194

