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Introduction 

Given a pair of integers, A , B, such that (A , B) = 1 and 0 < A < %5 5 we 
define a generalized Fibonacci sequence as follows: 

G0 = B - A, Gl = A, Gn = Gn_l + Gn_2 for n > 2. 

Terms with negative indices can also be defined by: 

6Ln = G^-n - G\-n for n > 1. 
We say that 

\G\ - GQG2\ = M 2 + AB - BZ\ 
is the characteristic of {Gn}, In addition, we define a conjugate sequence 
{Hn} by: 

HQ = B - A, Hl = B - 2A, Hn = Hn_l + Hn_2 for n > 2. 

It is easily seen that: 

1. £n > 0 and Hn > 0 for all n > 0; 

3. {£n} and {Hn} have the same characteristic; 

4. {Gn} and {Hn} are distinct unless A = 1, B = 3, in which case Gn = Hn = 
Ln (the nth Lucas number; see [1]). 

Let {Tn} = {Gn} or {#w}. If M is any positive integer, we say M enters 
{Tn} if there exists K > 0 such that M|TZ. The least such K will be called the 
entry point of M in {T„}, and denoted T(M) . The entry point of M in the 
original Fibonacci sequence {Fn} (which is guaranteed to exist) is denoted 
Z(M) . The entry point of M (if it exists) in {Ln}, {Gn}, {#n} will be denoted 
L(M), G(M)> H(M), respectively. 

In this paper we prove the following theorems. 

Theorem 1: If Af|G0, then M enters {Gn} and {#„}, and £(M) = #(M) = Z(M). 

Theorem 2: If Af|£0 but M enters {Gn}, then M also enters {#n}5 and G(Af) + #(A/) 
= Z(Af). 

Theorem 2 may be considered an entry point reciprocity law. We will make 
use of the following identities. 

V-U J-m+n = ^m-l-t-n ^m-^n + l 

(2) 

(3) H„ = 
(4) (Tn, Tn+1) = (Fn, F„+i) = 1 

(5) F_n = (-l)n-1Fn 

(6) 
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The Main Results 

Proof of Theorem 1: Since GQ = H0 = B - A, and (G0, G x) = (HGi H1) = 1, it 
suffices to show that, if {Tn} is a sequence such that M\TQ and (TQ, T\) = 1, 
then M enters {Tn} and T(M) = Z(M) . (1) implies TK = FK_lT0 + FKTl; therefore, 
hypothesis implies TK = FKTi (mod Af) , so that 

TZ(M) = Fz{M)Ti = 0 (mod M). 

Thus, M enters {Tn} and T(M) < Z(M) . Also 
FT(M)TI E ^ ( A f ) E 0 (mod M) . 

But (T0, Tx) = 1, so (Af, Ti) = 1. Therefore, FT(Af) E 0 (mod M) . This implies 
Z(M) < T(M), so ̂ (M) = Z(M). 

Lemma 1: Let {Tn} = {£n} or {#„}. If X is an integer such that 0 < X < Z(Af) 
and Tx E 0 (mod A/), then J = T(AQ . 

Proof: Hypothesis implies ^(AQ < X. Suppose T(M) = I7 < I. (1) implies 

TX = T(X-Y) + y = FX-Y-1TY + FX-YTY + l* 

Thus, 
^Y E ^-y-i^j + **-A+i (mod W -

But hypothesis implies Tx E TY E 0 (mod Af) , so FI„JTy + 1 E 0 (mod Af) . Hypothe-
sis and (4) imply (Ty, ̂ y+i) = 1, so that (Af, TY+l) = 1. Therefore, î .__Y E 0 
(mod M) . But 0 < Z - I < Z < Z(M) , which contradicts the definition of Z(M) . 
Hence, T{M) = Z. 

Proof of Theorem 2: Let rc = G(M) . Hypothesis and (2) imply Fn-2A + Fn_lB = 0 
(mod Af) . (3) implies 

HZ(M)-n = ~^Z(M) + 2-n^- + FZ(M) + l-nB' 

Now (6) implies 

FZ(M)+2~n = Fl-nFZ(M) + ^Z-n^ZCM) + 1 E F2-nFZ(M) + l E t ' 1 ^ ~lFn-2FZ(M) + l (mod M>> ' 

^Z(M)+l-n = F-nFZ(M) + Fl~nFZ(M)+l E ^1-n^Z(M) +1 E (-1) ^n - l̂ Z(M) + 1 (mod W • 

[The last steps involved use of (5).] Therefore, 

HZ(M)-n = (_1) Fn-ZFZ(M) + lA + C"1) ̂ n - l̂ Z(M) + l5 

E (-Dn^z(M) + l(^n-2^ + F„-iB) = 0 (mod M). 
Thus, by Lemma 1, 

E{M) = Z(M) - n = Z(M) - G(M) . 

CoroHary 1: For {Tn}, if T(Af) exists, then T(M) < Z(M); if T(M) = Z(M), then 

M\TQ. 

This follows from Theorems 1 and 2. 

Corollary 2: If A/ enters {Ln} and M > 2, then L(M) = %Z(M); L(2) - Z(2) = 3. 
Moreover, if Af > 2 and if Z(Af) is odd, then M does not enter {Ln}. 

Proof: 2|L0, SO Theorem 1 implies L(2) = Z(2) = 3 . If Af > 2 and M enters {£„}, 
then Af|L0. Since {Ln} is self-conjugate, Theorem 2 implies 2L(Af) = Z(M), so 
L(M) = %Z(Af). Hence, when Af > 2, M enters {Ln} only when Z(Af) is even. 
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