SECOND-ORDER RECURRENCE AND ITERATES OF $[\alpha n + 1/2]$

Clark Kimberling

University of Evansville, Evansville, IN 47222 (Submitted June 1989)

The equation

[x[nx + 1/2] + 1/2] = [nx + 1/2] + n

determines a unique real number x, in the sense that there is only one value of x for which this equation holds for all positive integers n. This special value of x is the golden mean, $(1 + \sqrt{5})/2$.

The purpose of this note is to prove the above assertion in the more general form of Theorem 1 (of which it is the case when a = b = 1), and to give a necessary and sufficient condition that iterates of the function $[\alpha n + 1/2]$, in the sense of Theorem 2, form a second-order recurrence sequence.

Notation: Throughout, let $f(x) = x^2 - ax - b$, where a and b are nonzero integers satisfying $a^2 + 4b > 0$. Write the roots of f(x) as

 $\alpha = (\alpha + \sqrt{\alpha^2 + 4b})/2$ and $\beta = \alpha - \alpha$.

Let $[a_0, a_1, a_2, \ldots]$ denote the continued fraction of the root α , with convergents p_{ν}/q_{ν} given in the usual way (e.g., Roberts [1], pp. 97-100) by

$$p_{-2} = 0, p_{-1} = 1, p_k = a_k p_{k-1} + p_{k-2}$$
 for $k \ge 0,$

 $q_{-2} = 1$, $q_{-1} = 0$, $q_0 = 1$, $q_k = a_k q_{k-1} + q_{k-2}$ for $k \ge 1$.

Lemma 1: $|\beta| < 1$ if and only if |b - 1| < |a|, and

 $|\beta| = 1$ if and only if $|b - 1| = |\alpha|$.

Proof: $|\beta| \leq 1$ if and only if

(1) $a - 2 \le \sqrt{a^2 + 4b} \le a + 2$,

with equality if and only if $|\beta| = 1$. This inequality shows that a cannot be less than or equal to -2, since $a^2 + 4b$ is positive. Moreover, if a = -1, then $b \ge 1$, so that $\sqrt{a^2 + 4b} > a + 2$, a contradiction. Therefore, $a \ge 1$. In case a = 1, we have

(2)
$$2 - a \le \sqrt{a^2 + 4b} \le a + 2$$
,

and if $a \ge 2$, then the leftmost member of inequality (1) is nonnegative. So, if a = 1, square the members of inequality (2), and if $a \ge 2$, square those of inequality (1). In both cases, the resulting inequalities easily simplify to $-a \le b - 1 \le a$.

 bq_k

Lemma 2: There exists a positive integer K such that

$$p_k - aq_k - 1)(p_k - 1)/q_k + 1/2] <$$

$$[(p_k - aq_k + 1)(p_k + 1)/q_k + 1/2]$$

for all $k \geq K$.

[(

bg

Proof: It suffices to prove for all large enough k the inequalities

 $(p_k - aq_k - 1)(p_k - 1)/q_k + 1/2 < bq_k + 1$

and

$$_{k} < (p_{k} - aq_{k} + 1)(p_{k} + 1)/q_{k} - 1/2$$

which are equivalent to

194

[Aug.

(3) $[(p_k - 1)/q_k]^2 + a/q_k < ap_k/q_k + b + 1/2q_k < [(p_k + 1)/q_k]^2 - a/q_k.$

Substitute $\alpha + \varepsilon$ for p_k/q_k , where $|\varepsilon| < 1/q_kq_{k+1}$ (e.g., Roberts [1], p. 100), square where indicated, and use the fact that $\alpha^2 - \alpha\alpha - b = 0$ to see that (3) is equivalent to

$$\left|\varepsilon q_{k}(a - 2\alpha - \varepsilon) + 1/2 - 1/q_{k}\right| < \left|a - 2\alpha - 2\varepsilon\right|$$

which holds for all large enough k, since, as $k \to \infty$, the left member approaches 1/2, while the right approaches $|\alpha - 2\alpha| = \sqrt{\alpha^2 + 4b} \ge 1$.

Lemma 3: If |b - 1| < |a|, then equation (4) below holds for $x = \alpha$ and for all $n \ge 1$.

Proof: By Lemma 1, $|\beta| < 1$, so that the fractional part $r = n\alpha + 1/2 - [n\alpha + 1/2]$ satisfies $|r - 1/2| < 1/2 |\beta|$. Since $\beta = \alpha - \alpha$, we have $-1 < (\alpha - \alpha)(1 - 2r) < 1$, so that $0 < (\alpha - \alpha + 1)/2 + (\alpha - \alpha)r < 1$. Since $\alpha^2 = \alpha\alpha + b$, we then have

 $0 < (\alpha - \alpha)(n\alpha + 1/2 - r) + 1/2 - bn < 1$,

or

$$bn < (\alpha - \alpha)[n\alpha + 1/2] + 1/2 < 1 + bn$$
,

so that equation (4) holds for $x = \alpha$.

Theorem 1: Suppose a and b are integers satisfying |b - 1| < |a|. Then there exists one and only one number x for which

(4)
$$[x[nx + 1/2] + 1/2] = a[nx + 1/2] + bn$$

for all $n \ge 1$. Explicitly, $x = \alpha = (\alpha + \sqrt{a^2 + 4b})/2$.

Proof: Let *n* be the denominator q_k of the k^{th} convergent p_k/q_k to the root α of $x^2 - \alpha x - b$. We shall show that in order for (4) to hold for this choice of *n*, the number *x* must lie inside infinitely many intervals (L_k, R_k) , where

 $L_k = (p_k - 1)/q_k$ and $R_k = (p_k + 1)/q_k$.

To see that $x \ge L_k$ for all large enough k, observe that, for $x < L_k$ and all large enough k, we have

[x[nx + 1/2] + 1/2 - a[nx + 1/2]] = [(x - a)[nx + 1/2] + 1/2]

 $\leq [((p_{k} - 1)/q_{k} - a)[p_{k} - 1 + 1/2] + 1/2]$

 $\leq [(p_k - aq_k - 1)(p_k - 1)/q_k + 1/2] < bq_k,$

by Lemma 2. This contradiction to (4) shows that $x \ge L_k$ for all large enough k. Similarly, Lemma 2 shows that $x \le R_k$ for all large k. It follows that the only viable candidate for x is α , since only this number lies inside infinitely many of the intervals (L_k, R_k) .

Lemma 3 shows that the root α does indeed satisfy (4) for all $n \ge 1$.

Theorem 2: For any positive integer n, the sequence $\{s_k\}$ given by

 $s_1 = n, s_2 = [\alpha n + 1/2], s_3 = [\alpha s_2 + 1/2], \dots, s_k = [\alpha s_{k-1} + 1/2]$

satisfies the recurrence relation $s_k = as_{k-1} + bs_{k-2}$ for all $n \ge 1$ and for all $k \ge 2$ if and only if $|b - 1| \le |a|$.

Proof; If |b - 1| < |a|, then $s_3 = as_2 + bs_1$, according to (4). In fact, for any $k \ge 3$, substituting s_{k-2} for n into (4) yields $[\alpha s_k + 1/2] = as_{k-1} + bs_{k-2}$, as asserted.

Now, if b - 1 = a, then $\alpha = a + 1$, so that

 $s_2 = (a + 1)n$ and $s_3 = (a + 1)s_2 = (a + 1)^2n = as_2 + bs_1$.

1991]

195

SECOND-ORDER RECURRENCE AND ITERATES OF $[\alpha n + 1/2]$

By induction,

$$s_k = (a + 1)^{k-1}n = as_{k-1} + bs_{k-2}$$
 for all $k \ge 3$.

Similarly, if $b - 1 = -\alpha$, then

 $s_k = (a - 1)^{k-1}n = as_{k-1} + bs_{k-2}$ for all $k \ge 3$.

If |b - 1| > |a|, then $|\beta| > 1$ by Lemma 1. Then the well-known representation $a_1 \alpha^m + b_1 \beta^m$ for the m^{th} term of any recurrence sequence

 $t_m = at_{m-1} + bt_{m-2},$

for which $a^2 + 4b > 0$, shows that the sequence

 $\alpha t_m - t_{m+1} = b_1 \beta^m (\alpha - \beta)$

diverges, so that the relation $t_{m+1} = [\alpha t_m + 1/2]$ cannot hold for all m.

In conclusion, we note that the well-known representation

 $F_n = [\alpha F_{n-1} + 1/2]$

for the n^{th} Fibonacci number in terms of the golden mean, α , and only one preceding term, follows from Theorem 2 when a = b = 1. Theorem 2 reveals many other second-order recurrence sequences which lend themselves to this sort of first-order recurrence.

Reference

1. Joe Roberts. Elementary Number Theory. Cambridge, Mass.: MIT Press, 1977.
