SECOND-ORDER RECURRENCE AND ITERATES OF [$\alpha n+1 / 2$]

Clark Kimberling
University of Evansville, Evansville, IN 47222
(Submitted June 1989)

The equation

$$
[x[n x+1 / 2]+1 / 2]=[n x+1 / 2]+n
$$

determines a unique real number x, in the sense that there is only one value of x for which this equation holds for all positive integers n. This special value of x is the golden mean, $(1+\sqrt{5}) / 2$.

The purpose of this note is to prove the above assertion in the more general form of Theorem 1 (of which it is the case when $\alpha=b=1$), and to give a necessary and sufficient condition that iterates of the function $[\alpha n+1 / 2]$, in the sense of Theorem 2 , form a second-order recurrence sequence.

Notation: Throughout, let $f(x)=x^{2}-a x-b$, where a and b are nonzero integers satisfying $a^{2}+4 b>0$. Write the roots of $f(x)$ as

$$
\alpha=\left(\alpha+\sqrt{\alpha^{2}+4 b}\right) / 2 \text { and } \beta=\alpha-\alpha
$$

Let $\left[\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots\right]$ denote the continued fraction of the root α, with convergents p_{k} / q_{k} given in the usual way (e.g., Roberts [1], pp. 97-100) by

$$
\begin{aligned}
& p_{-2}=0, p_{-1}=1, p_{k}=a_{k} p_{k-1}+p_{k-2} \text { for } k \geq 0 \\
& q_{-2}=1, q_{-1}=0, q_{0}=1, q_{k}=a_{k} q_{k-1}+q_{k-2} \text { for } k \geq 1
\end{aligned}
$$

Lemma 1: $|\beta|<1$ if and only if $|b-1|<|\alpha|$, and $|\beta|=1$ if and only if $|b-1|=|\alpha|$.

Proof: $|\beta| \leq 1$ if and only if

$$
\begin{equation*}
a-2 \leq \sqrt{a^{2}+4 b} \leq a+2 \tag{1}
\end{equation*}
$$

with equality if and only if $|\beta|=1$. This inequality shows that α cannot be less than or equal to -2 , since $a^{2}+4 b$ is positive. Moreover, if $a=-1$, then $b \geq 1$, so that $\sqrt{a^{2}+4 b}>a+2$, a contradiction. Therefore, $a \geq 1$. In case $a=1$, we have

$$
\begin{equation*}
2-a \leq \sqrt{a^{2}+4 b} \leq a+2 \tag{2}
\end{equation*}
$$

and if $\alpha \geq 2$, then the leftmost member of inequality (1) is nonnegative. So, if $\alpha=1$, square the members of inequality (2), and if $\alpha \geq 2$, square those of inequality (1). In both cases, the resulting inequalities easily simplify to $-a \leq b-1 \leq a$.
Lemma 2: There exists a positive integer K such that

$$
\left[\left(p_{k}-a q_{k}-1\right)\left(p_{k}-1\right) / q_{k}+1 / 2\right]<b q_{k}
$$

for all $k \geq K$.

$$
<\left[\left(p_{k}-a q_{k}+1\right)\left(p_{k}+1\right) / q_{k}+1 / 2\right]
$$

Proof: It suffices to prove for all large enough k the inequalities

$$
\left(p_{k}-a q_{k}-1\right)\left(p_{k}-1\right) / q_{k}+1 / 2<b q_{k}+1
$$

$$
b q_{k}<\left(p_{k}-a q_{k}+1\right)\left(p_{k}+1\right) / q_{k}-1 / 2
$$

which are equivalent to

$$
\begin{equation*}
\left[\left(p_{k}-1\right) / q_{k}\right]^{2}+a / q_{k}<a p_{k} / q_{k}+b+1 / 2 q_{k}<\left[\left(p_{k}+1\right) / q_{k}\right]^{2}-a / q_{k} \tag{3}
\end{equation*}
$$

Substitute $\alpha+\varepsilon$ for p_{k} / q_{k}, where $|\varepsilon|<1 / q_{k} q_{k+1}$ (e.g., Roberts [1], p. 100), square where indicated, and use the fact that $\alpha^{2}-\alpha \alpha-b=0$ to see that (3) is equivalent to

$$
\left|\varepsilon q_{k}(\alpha-2 \alpha-\varepsilon)+1 / 2-1 / q_{k}\right|<|\alpha-2 \alpha-2 \varepsilon|
$$

which holds for all large enough k, since, as $k \rightarrow \infty$, the left member approaches $1 / 2$, while the right approaches $|\alpha-2 \alpha|=\sqrt{\alpha^{2}+4 b} \geq 1$.
Lemma 3: If $|b-1|<|\alpha|$, then equation (4) below holds for $x=\alpha$ and for all $n \geq 1$ 。
Proof: By Lemma 1, $|\beta|<1$, so that the fractional part $r=n \alpha+1 / 2-[n \alpha+1 / 2]$ satisfies $|r-1 / 2|<1 / 2|\beta|$. Since $\beta=\alpha-\alpha$, we have $-1<(\alpha-\alpha)(1-2 r)<1$, so that $0<(\alpha-\alpha+1) / 2+(\alpha-\alpha) r<1$. Since $\alpha^{2}=\alpha \alpha+b$, we then have

$$
0<(\alpha-a)(n \alpha+1 / 2-r)+1 / 2-b n<1
$$

or

$$
b n<(\alpha-\alpha)[n \alpha+1 / 2]+1 / 2<1+b n
$$

so that equation (4) holds for $x=\alpha$.
Theorem 1: Suppose a and b are integers satisfying $|b-1|<|a|$. Then there exists one and only one number x for which
(4) $[x[n x+1 / 2]+1 / 2]=\alpha[n x+1 / 2]+b n$
for all $n \geq 1$. Explicitly, $x=\alpha=\left(\alpha+\sqrt{\alpha^{2}+4 b}\right) / 2$.
Proof: Let n be the denominator q_{k} of the $k^{\text {th }}$ convergent p_{k} / q_{k} to the root α of $x^{2}-a x-b$. We shall show that in order for (4) to hold for this choice of n, the number x must lie inside infinitely many intervals (L_{k}, R_{k}), where

$$
L_{k}=\left(p_{k}-1\right) / q_{k} \quad \text { and } \quad R_{k}=\left(p_{k}+1\right) / q_{k}
$$

To see that $x \geq L_{k}$ for all large enough k, observe that, for $x<I_{k}$ and all large enough k, we have

$$
\begin{aligned}
& {[x[n x+1 / 2]+1 / 2-a[n x+1 / 2]]=[(x-a)[n x+1 / 2]+1 / 2]} \\
& \leq\left[\left(\left(p_{k}-1\right) / q_{k}-a\right)\left[p_{k}-1+1 / 2\right]+1 / 2\right] \\
& \leq\left[\left(p_{k}-a q_{k}-1\right)\left(p_{k}-1\right) / q_{k}+1 / 2\right]<b q_{k}
\end{aligned}
$$

by Lemma 2. This contradiction to (4) shows that $x \geq L_{k}$ for all large enough k. Similarly, Lemma 2 shows that $x \leq R_{k}$ for all large k. It follows that the only viable candidate for x is α, since only this number lies inside infinitely many of the intervals $\left(L_{k}, R_{k}\right)$.

Lemma 3 shows that the root α does indeed satisfy (4) for all $n \geq 1$.
Theorem 2: For any positive integer n, the sequence $\left\{s_{k}\right\}$ given by

$$
s_{1}=n, s_{2}=[\alpha n+1 / 2], s_{3}=\left[\alpha s_{2}+1 / 2\right], \ldots, s_{k}=\left[\alpha s_{k-1}+1 / 2\right]
$$

satisfies the recurrence relation $s_{k}=\alpha s_{k-1}+b s_{k-2}$ for all $n \geq 1$ and for all $k \geq 2$ if and only if $|b-1| \leq|a|$.
Proof; If $|b-1|<|a|$, then $s_{3}=a s_{2}+b s_{1}$, according to (4). In fact, for any $k \geq 3$, substituting s_{k-2} for n into (4) yields $\left[\alpha s_{k}+1 / 2\right]=\alpha s_{k-1}+b s_{k-2}$, as asserted.

Now, if $b-1=\alpha$, then $\alpha=\alpha+1$, so that
$s_{2}=(\alpha+1) n$ and $s_{3}=(a+1) s_{2}=(\alpha+1)^{2} n=a s_{2}+b s_{1}$.

By induction,

$$
s_{k}=(a+1)^{k-1} n=a s_{k-1}+b s_{k-2} \text { for all } k \geq 3
$$

Similarly, if $b-1=-\alpha$, then

$$
s_{k}=(a-1)^{k-1} n=a s_{k-1}+b s_{k-2} \text { for all } k \geq 3
$$

If $|\bar{b}-1|>|\alpha|$, then $|\beta|>1$ by Lemma 1 . Then the wel1-known representation $a_{1} \alpha^{m}+b_{1} \beta^{m}$ for the $m^{\text {th }}$ term of any recurrence sequence

$$
t_{m}=a t_{m-1}+b t_{m-2}
$$

for which $a^{2}+4 b>0$, shows that the sequence

$$
\alpha t_{m}-t_{m+1}=b_{1} \beta^{m}(\alpha-\beta)
$$

diverges, so that the relation $t_{m+1}=\left[\alpha t_{m}+1 / 2\right]$ cannot hold for all m.
In conclusion, we note that the well-known representation

$$
F_{n}=\left[\alpha F_{n-1}+1 / 2\right]
$$

for the $n^{\text {th }}$ Fibonacci number in terms of the golden mean, α, and only one preceding term, follows from Theorem 2 when $a=b=1$. Theorem 2 reveals many other second-order recurrence sequences which lend themselves to this sort of first-order recurrence.

Reference

1. Joe Roberts. Elementary Number Theory. Cambridge, Mass.: MIT Press, 1977.
