SETS OF TERMS THAT DETERMINE ALL THE TERMS OF A LINEAR RECURRENCE SEQUENCE

Clark Kimberling

University of Evansville, Evansville, IN 47222 (Submitted August 1989)

A second-order linear homogeneous recurrence sequence u_0 , u_1 , u_2 , ... is defined by a recurrence relation $u_n = au_{n-1} + bu_{n-2}$, where a and b are complex numbers with $b \neq 0$, and two initial terms u_0 and u_1 . We raise the following question: for given a and b, what sets of terms, other than u_0 and u_1 , are sufficient to determine the entire sequence? We shall see that any two terms are often sufficient, but not always. A comparable result will then be presented for recurrences of higher order.

Suppose a and b are given and v_p and v_q , where p < q, are known terms of a sequence satisfying $v_m = av_{m-1} + bv_{m-2}$. Then the terms u_0 and u_n of the sequence defined by $u_m = v_{m+p}$, where n = q - p, are known. Accordingly, without loss of generality, we recast the original question as follows: under what conditions on a, b, and n do the values of u_0 and u_n determine the values of u_m for all $m \ge 0$?

The answer depends on a sequence of bivariate polynomials defined recursively by $F_m(x, y) = xF_{m-1}(x, y) + yF_{m-2}(x, y)$, beginning with $F_1(x, y) = 1$ and $F_2(x, y) = x$. These are often called *Fibonacci polynomials*; indeed, $F_m(1, 1)$ is the m^{th} Fibonacci number.

Theorem 1: Suppose α and b are complex numbers satisfying $F_n(\alpha, b) \neq 0$, where $b \neq 0$ and $F_n(x, y)$ denotes the Fibonacci polynomial of degree n - 1 in x. Then u_0 and u_n determine u_m for all $m \ge 0$.

Proof: If n = 1, then the recurrence $u_m = au_{m-1} + bu_{m-2}$ determines u_m inductively for all $m \ge 0$.

If n = 2, then the equation $u_2 = au_1 + bu_0$ yields $u_1 = (u_2 - bu_0)/a$, so that u_1 and hence all u_m are determined. [Note that $a \neq 0$, since $a = F_2(a, b)$.]

For $n \ge 3$, we have a system $u_s = au_{s-1} + bu_{s-2}$ of n-1 equations, for $s = 2, 3, \ldots, n$. Write the first of these as $au_1 - u_2 = -bu_0$, the last as $bu_{n-2} + au_{n-1} = u_n$, and all the others as $bu_{s-2} + au_{s-1} - u_s = 0$. As an example, for n = 5, we have

 $au_{1} - u_{2} = -bu_{0}$ $bu_{1} + au_{2} - u_{3} = 0$ $bu_{2} + au_{3} - u_{4} = 0$ $bu_{3} + au_{4} = u_{5}.$

The coefficient matrix of this system,

 $\begin{bmatrix} a & -1 & 0 & 0 \\ b & a & -1 & 0 \\ 0 & b & a & -1 \\ 0 & 0 & b & a \end{bmatrix}$

clearly has determinant $F_5(a, b)$ given by Laplace expansion about the first column: $aF_4(a, b) + bF_3(a, b)$.

For the general case, $n \ge 3$, it easy to see, inductively, that the determinant of the coefficient matrix is $F_n(a, b)$. Accordingly, if $F_n(a, b) \ne 0$, then the system has a unique solution. In particular, u_1 is determined, so that u_m is determined for all $m \ge 0$.

[Aug.

244

Theorem 2: Suppose u_0 and u_n are known for some $n \ge 1$. Suppose, further, that a^2/b is a nonzero integer and one of the following holds:

(i) a^2/b does not equal -1, -2, or -3; (ii) if $n \equiv 0 \mod 3$, then $a^2 + b \neq 0$; (iii) if $n \equiv 0 \mod 4$, then $a^2 + 2b \neq 0$; (iv) if $n \equiv 0 \mod 6$, then $a^2 + 3b \neq 0$.

Then u_m is determined for all $m \ge 0$.

Proof: The polynomial $F_n(x, y)$ is an even function in x if n is odd, and odd in x if n is even. Accordingly, by the Fundamental Theorem of Algebra, this polynomial factors in the form

$$f_n(x^2, y) = (x^2 - c_1 y)(x^2 - c_2 y) \cdots (x^2 - c_{\lfloor \frac{n-1}{2} \rfloor} y)$$

if n is odd, and $xf_{n-1}(x^2, y)$ if n is even, where c_i is a complex number for $i = 1, 2, \ldots, n - 1$.

If a^2/b is a nonzero integer k, then $a^2 - kb = 0$, so that $c_i = a^2/b$ for some *i*. Thus, $x^2 - (a^2/b)y$ divides $F_n(x, y)$.

It is known ([1], Theorem 6) that the only divisors of $F_n(x, y)$ over the ring I[x, y] that have degree 2 in x are the three second-degree Fibonacci-cyclotomic polynomials: $x^2 + y$, $x^2 + 2y$, $x^2 + 3y$, and that these are divisors if and only if n is divisible by 3, 4, or 6, respectively. Therefore, except for the four recognized cases, we have $F_n(\alpha, b) \neq 0$, so that, by Theorem 1, u_m is determined for all $m \ge 0$.

Theorem 3: Suppose $a^2 + b = 0$ and u_0 is known. Then $u_m = (-a)^m u_0$ for every $m \equiv 0 \mod 3$. Also, if u_k is known for some k not congruent to 0 modulo 3, then u_m is determined for all $m \ge 0$. In fact,

(1)
$$u_m = (-a^3)^i u_j,$$

for m = 3i + j, j = 0, 1, 2, where $u_2 = au_1 - a^2u_0$.

Proof: First, we shall establish equation (1). The statements

 $u_{3i} = (-1)^i a^{3i} u_0$, $u_{3i+1} = (-1)^i a^{3i} u_1$, and $u_{3i+2} = (-1)^i a^{3i} u_2$

are clearly true for i = 0. Assume them true for arbitrary $i \ge 0$. Then

 $\begin{aligned} u_{3i+3} &= a u_{3i+2} + b u_{3i+1} \\ &= a (-1)^i a^{3i} u_2 - a^2 (-1)^i a^{3i} u_1 \\ &= (-1)^i a^{3i+1} (u_2 - a u_1) \\ &= (-1)^i a^{3i+1} (-a^2 u_0) \\ &= (-1)^{i+1} a^{3i+3} u_0, \end{aligned}$

and, similarly,

$$u_{3i+4} = (-1)^{i+1}a^{3i+3}u_1$$
 and $u_{3i+5} = (-1)^{i+1}a^{3i+3}u_2$.

By induction, therefore,

$$u_m = (-\alpha^3)^i u_j$$
 for $m = 3i + j$, $j = 0, 1, 2$.

Now equation (1) shows that u_0 determines those u_m for which *m* is a multiple of 3, and no others. However, if u_{3i+1} is also known for some *i*, then

$$u_{3i+1} = (-a^{3})^{\iota} u_{1},$$

so that u_1 is determined, and hence u_m is determined for all $m \ge 0$. A similar argument obviously applies if u_{3i+2} is known for some i.

1991]

245

Theorem 4: Suppose $a^2 + 2b = 0$ and u_0 is known. Then

 $u_m = (-1/4)^{m/4} a^m u_0 \text{ for every } m \equiv 0 \mod 4.$

If u_k is also known for some k not congruent to 0 modulo 4, then u_m is determined for all $m \ge 0$. In fact,

$$u_m = (-a^4/4)^{\imath} u_j$$
 for $m = 4i + j$, $j = 0, 1, 2, 3$,

where $u_2 = au_1 - (a^2/2)u_0$ and $u_3 = (a^2/2)u_1 - (a^3/2)u_0$.

Proof: (The proof is similar to that of Theorem 3 and is omitted here.)

Theorem 5: Suppose $a^2 + 3b = 0$ and u_0 is known. Then

 $u_m = (-1/27)^{m/6} a^m u_0$ for every $m \equiv 0 \mod 6$.

If u_k is also known for some k not congruent to 0 modulo 6, then u_m is determined for all $m \ge 0$. Explicitly,

$$\begin{split} u_2 &= a u_1 - (a^2/3) u_0, \\ u_3 &= (2a^2/3) u_1 - (a^3/3) u_0, \\ u_4 &= (a^3/3) u_1 - (2a^4/9) u_0, \\ u_5 &= (a^4/9) u_1 - (a^5/9) u_0, \\ u_m &= (-a^6/27)^i u_j, \end{split}$$

and $u_m = (-a)$

for
$$m = 6i + j = 0, 1, 2, 3, 4, 5$$
.

Proof: (The proof is similar to that of Theorem 3 and is omitted here.)

Second-order sequences for which $u_1 \neq 0$ and $u_0 = u_n = 0$ for some $n \geq 2$ are of special interest, since in this case $F_n(\alpha, b) = 0$, so that Theorem 1 does not apply. Theorem 6 describes such sequences. [To see that $F_n(\alpha, b) = 0$, note that the recurrence $u_m = au_{m-1} + bu_{m-2}$ gives

$$u_2 = au_1, \quad u_3 = au_2 + bu_1 = (a^2 + b)u_1 = u_1F_3(a, b),$$

 $u_2 = au_1$, $u_3 = au_2 + bu_1 =$ and by induction, $u_n = u_1 F_n(a, b)$.]

Theorem 6: Let $F_n(x, y)$ denote the n^{th} Fibonacci polynomial, where $n \ge 2$. If $u_1 = 0$ and $u_0 = u_n = 0$, then $F_n(\alpha, b) = 0$, and there exist nonzero real numbers c, r and positive integers p, q such that

 $u_m = cr^m \sin mp\pi/q$,

where n is an integer multiple of q, for m = 0, 1, ...

Proof: From the Binet representation for the general term of a second-order homogeneous recurrence sequence,

 $u_m = w\alpha^m + z\overline{\alpha}^m$.

It is easy to check that z must be a complex conjugate of w, so, after writing w = a + bi and $\alpha = p(\cos \theta + i \sin \theta)$, we have

$$u_m = (a + bi)r^m(\cos m\theta + i \sin m\theta) + (a - bi)r^m(\cos m\theta - i \sin m\theta)$$

 $= 2r^m(a \cos m\theta - b \sin m\theta).$

Now α must equal 0, since $u_0 = 0$, and sin $n\theta$ must equal 0, since $u_n = 0$. It follows that θ must be of the form $p\pi/q$, where n is a multiple of q. Thus, the asserted form for u_m has been demonstrated. Since u_m is not uniquely determined, Theorem 1 shows that $F(\alpha, b) = 0$ (as was already proved differently just before the statement of Theorem 6).

[Aug.

Sequences of Higher Order

The method of proof of Theorem 1 extends readily to recurrence sequences of arbitrary order $k \ge 2$, as indicated by Theorem 7.

Theorem 7: Suppose $k \ge 2$, and suppose $c_0, c_1, \ldots, c_{k-1}$ are complex numbers satisfying $c_{k-1} \ne 0$. A set of k terms,

 $u_0, u_{m_1}, u_{m_2}, \ldots, u_{m_{k-1}},$

where $0 < m_1 < m_2 < \dots < m_{k-1},$ uniquely determine all the terms of a recurrence sequence given by

(2)
$$u_n = c_{k-1}u_{n-1} + c_{k-2}u_{n-2} + \dots + c_0u_{n-k}$$

if and only if the matrix M defined below is nonsingular: let N denote the $(m_{k-1} - k + 1) \times (m_{k-1} + 1)$ matrix $(a_{i,i})$ given by

$$a_{ij} = \begin{cases} c_{j-i+1} & \text{for } j = i - 1, i, \dots, i + k - 2\\ -1 & \text{for } j = i + k - 1\\ 0 & \text{for all remaining } j, 0 \le j \le m_{k-1}, \end{cases}$$

for $i = 1, 2, \ldots, m_{k-1} - k + 1$,

and define M to be the $(m_{k-1} - k + 1) \times (m_{k-1} - k + 1)$ matrix obtained by deleting from N the columns numbered 0, $m_1, m_2, \ldots, m_{k-1}$.

Proof: Equation (2) generates, for $n = k, k + 1, \ldots, m_{k-1}$, a system of $m_{k-1} - k + 1$ equations of the form

(3)
$$c_{k-1}u_{n-1} + c_{k-2}u_{n-2} + \dots + c_0u_{n-k} - u_n = 0.$$

If all the terms u_0 , u_1 , u_2 , ..., $u_{m_{k-1}}$ are regarded as unknowns, then the coefficient matrix of the system is N. If u_0 , u_{m_1} , u_{m_2} , ..., $u_{m_{k-1}}$ are now regarded as known, and accordingly transposed to the right-hand side of each of the equations (3), then the coefficient matrix of the resulting system is M. By Cramer's Rule, this system has a unique solution if and only if $|M| \neq 0$.

As an example, consider a third-order recurrence

 $u_n = au_{n-1} + bu_{n-2} + cu_{n-3},$

and suppose u_0 , u_1 , and u_m are known. (In the notation of Theorem 6, k = 3, $m_1 = 1$, and $m_2 = m$.) Define $T_1 = 1$, $T_2 = \alpha$, and find for m = 4 that

$$N_{4} = \begin{bmatrix} c & b & a & -1 & 0 \\ 0 & c & b & a & -1 \end{bmatrix},$$

which on deletion of columns 0, 1, and 4 leaves

$$M_{4} = \begin{bmatrix} a & -1 \\ b & a \end{bmatrix}$$

with determinant $a^2 + b$. Define $T_3 = a^2 + b$. For m = 5,

$$N_{5} = \begin{bmatrix} c & b & a & -1 & 0 & 0 \\ 0 & c & b & a & -1 & 0 \\ 0 & 0 & c & b & a & -1 \end{bmatrix} \text{ yields } M_{5} = \begin{bmatrix} a & -1 & 0 \\ b & a & -1 \\ c & b & a \end{bmatrix},$$

with determinant $T_4 \equiv aT_3 + bT_2 + cT_1$. Continuing with $m = 6, 7, 8, \ldots$, we obtain recursively a sequence of trivariate polynomials:

1991]

247

$T_m = \alpha T_{m-1} + b T_{m-2} + c T_{m-1}.$

Since, for example, $T_4(1, -1, 1) = 0$, Theorem 6 tells us that u_0 , u_1 , and u_5 are not sufficient to determine all the terms of a sequence obeying the recurrence $u_n = u_{n-1} - u_{n-2} + u_{n-3}$. On the other hand, as $T_5(1, -1, 1) \neq 0$, the terms u_0 , u_1 , and u_6 do determine the entire sequence.

Reference

 C. Kimberling. "Generalized Cyclotomic Polynomials, Fibonacci Cyclotomic Polynomials, and Lucas Cyclotomic Polynomials." *Fibonacci Quarterly* 18.2 (1980):108-26.

,

.