SETS OF TERMS THAT DETERMINE ALL THE TERMS OF A LINEAR RECURRENCE SEQUENCE

Clark Kimberling
University of Evansville, Evansville, IN 47222
(Submitted August 1989)

A second-order linear homogeneous recurrence sequence $u_{0}, u_{1}, u_{2}, \ldots$ is defined by a recurrence relation $u_{n}=a u_{n-1}+b u_{n-2}$, where a and b are complex numbers with $b \neq 0$, and two initial terms u_{0} and u_{1}. We raise the following question: for given a and b, what sets of terms, other than u_{0} and u_{1}, are sufficient to determine the entire sequence? We shall see that any two terms are often sufficient, but not always. A comparable result will then be presented for recurrences of higher order.

Suppose a and b are given and v_{p} and v_{q}, where $p<q$, are known terms of a sequence satisfying $v_{m}=a v_{m-1}+b v_{m-2}$. Then the terms u_{0} and u_{n} of the sequence defined by $u_{m}=v_{m+p}$, where $n=q-p$, are known. Accordingly, without loss of generality, we recast the original question as follows: under what conditions on a, b, and n do the values of u_{0} and u_{n} determine the values of u_{m} for all $m \geq 0$?

The answer depends on a sequence of bivariate polynomials defined recursively by $F_{m}(x, y)=x F_{m-1}(x, y)+y F_{m-2}(x, y)$, beginning with $F_{1}(x, y)=1$ and $F_{2}(x, y)=x$. These are often called Fibonacci polynomials; indeed, $F_{m}(1,1)$ is the $m^{\text {th }}$ Fibonacci number.

Theorem 1: Suppose α and b are complex numbers satisfying $F_{n}(a, b) \neq 0$, where $b \neq 0$ and $F_{n}(x, y)$ denotes the Fibonacci polynomial of degree $n-1$ in x. Then u_{0} and u_{n} determine u_{m} for all $m \geq 0$.
Proof: If $n=1$, then the recurrence $u_{m}=a u_{m-1}+b u_{m-2}$ determines u_{m} inductively for all $m \geq 0$.

If $n=2$, then the equation $u_{2}=a u_{1}+b u_{0}$ yields $u_{1}=\left(u_{2}-b u_{0}\right) / a$, so that u_{1} and hence all u_{m} are determined. [Note that $\alpha \neq 0$, since $a=F_{2}(a, b)$.]

For $n \geq 3$, we have a system $u_{s}=a u_{s-1}+b u_{s-2}$ of $n-1$ equations, for $s=$ $2,3, \ldots, n$. Write the first of these as $\alpha u_{1}-u_{2}=-b u_{0}$, the last as $b u_{n-2}+$ $a u_{n-1}=u_{n}$, and all the others as $b u_{s-2}+a u_{s-1}-u_{s}=0$. As an example, for $n=5$, we have

$$
\begin{aligned}
a u_{1}-u_{2} & =-b u_{0} \\
b u_{1}+a u_{2}-u_{3} & =0 \\
b u_{2}+a u_{3}-u_{4} & =0 \\
b u_{3}+a u_{4} & =u_{5} .
\end{aligned}
$$

The coefficient matrix of this system,

$$
\left[\begin{array}{rrrr}
a & -1 & 0 & 0 \\
b & a & -1 & 0 \\
0 & b & a & -1 \\
0 & 0 & b & a
\end{array}\right]
$$

clearly has determinant $F_{5}(a, b)$ given by Laplace expansion about the first column: $a F_{4}(a, b)+b F_{3}(a, b)$.

For the general case, $n \geq 3$, it easy to see, inductively, that the determinant of the coefficient matrix is $F_{n}(\alpha, b)$. Accordingly, if $F_{n}(\alpha, b) \neq 0$, then the system has a unique solution. In particular, u_{1} is determined, so that u_{m} is determined for all $m \geq 0$.

Theorem 2: Suppose u_{0} and u_{n} are known for some $n \geq 1$. Suppose, further, that a^{2} / b is a nonzero integex and one of the following holds:
(i) a^{2} / b does not equal $-1,-2$, or -3 ;
(ii) if $n \equiv 0 \bmod 3$, then $a^{2}+b \neq 0$;
(iii) if $n \equiv 0 \bmod 4$, then $a^{2}+2 b \neq 0$;
(iv) if $n \equiv 0 \bmod 6$, then $a^{2}+3 b \neq 0$ 。

Then u_{m} is determined for all $m \geq 0$.
Proof: The polynomial $F_{n}(x, y)$ is an even function in x if n is odd, and odd in x if n is even. Accordingly, by the Fundamental Theorem of Algebra, this polynomial factors in the form

$$
f_{n}\left(x^{2}, y\right)=\left(x^{2}-c_{1} y\right)\left(x^{2}-c_{2} y\right) \cdots\left(x^{2}-c_{\left[\frac{n-1}{2}\right.} y\right)
$$

if n is odd, and $x f_{n-1}\left(x^{2}, y\right)$ if n is even, where c_{i} is a complex number for $i=1,2, \ldots, n-1$.

If a^{2} / b is a nonzero integer k, then $a^{2}-k b=0$, so that $c_{i}=a^{2} / b$ for some i. Thus, $x^{2}-\left(\alpha^{2} / b\right) y$ divides $F_{n}(x, y)$.

It is known ([1], Theorem 6) that the only divisors of $F_{n}(x, y)$ over the ring $I[x, y]$ that have degree 2 in x are the three second-degree Fibonaccicyclotomic polynomials: $x^{2}+y, x^{2}+2 y, x^{2}+3 y$, and that these are divisors if and only if n is divisible by 3, 4, or 6, respectively. Therefore, except for the four recognized cases, we have $F_{n}(\alpha, b) \neq 0$, so that, by Theorem 1 , u_{m} is determined for all $m \geq 0$.
Theorem 3: Suppose $a^{2}+b=0$ and u_{0} is known. Then $u_{m}=(-a)^{m} u_{0}$ for every $m \equiv 0 \bmod 3$. Also, if u_{k} is known for some k not congruent to 0 modulo 3 , then u_{m} is determined for all $m \geq 0$. In fact,
(1) $\quad u_{m}=\left(-a^{3}\right)^{i} u_{j}$,
for $m=3 i+j, j=0,1,2$, where $u_{2}=\alpha u_{1}-\alpha^{2} u_{0}$.
Proof: First, we shall establish equation (1). The statements

$$
u_{3 i}=(-1)^{i} a^{3 i} u_{0}, \quad u_{3 i+1}=(-1)^{i} a^{3 i} u_{1}, \quad \text { and } \quad u_{3 i+2}=(-1)^{i} a^{3 i} u_{2}
$$

are clearly true for $i=0$. Assume them true for arbitrary $i \geq 0$. Then

$$
\begin{aligned}
u_{3 i+3} & =a u_{3 i+2}+b u_{3 i+1} \\
& =a(-1)^{i} a^{3 i} u_{2}-a^{2}(-1)^{i} a^{3 i} u_{1} \\
& =(-1)^{i} a^{3 i+1}\left(u_{2}-a u_{1}\right) \\
& =(-1)^{i} a^{3 i+1}\left(-a^{2} u_{0}\right) \\
& =(-1)^{i+1} a^{3 i+3} u_{0}
\end{aligned}
$$

and, similarly,

$$
u_{3 i+4}=(-1)^{i+1} \alpha^{3 i+3} u_{1} \text { and } u_{3 i+5}=(-1)^{i+1} a^{3 i+3} u_{2}
$$

By induction, therefore,

$$
u_{m}=\left(-a^{3}\right)^{i} u_{j} \text { for } m=3 i+j, j=0,1,2
$$

Now equation (1) shows that u_{0} determines those u_{m} for which m is a multiple of 3 , and no others. However, if $u_{3 i+1}$ is also known for some i, then

$$
u_{3 i+1}=\left(-a^{3}\right)^{i} u_{1}
$$

so that u_{1} is determined, and hence u_{m} is determined for all $m \geq 0$. A similar argument obviously applies if $u_{3 i+2}$ is known for some i.

Theorem 4: Suppose $a^{2}+2 b=0$ and u_{0} is known. Then

$$
u_{m}=(-1 / 4)^{m / 4} a^{m} u_{0} \text { for every } m \equiv 0 \bmod 4
$$

If u_{k} is also known for some k not congruent to 0 modulo 4 , then u_{m} is determined for all $m \geq 0$. In fact,

$$
u_{m}=\left(-a^{4} / 4\right)^{i} u_{j} \text { for } m=4 i+j, j=0,1,2,3
$$

where $u_{2}=a u_{1}-\left(\alpha^{2} / 2\right) u_{0}$ and $u_{3}=\left(a^{2} / 2\right) u_{1}-\left(\alpha^{3} / 2\right) u_{0}$.
Proof: (The proof is similar to that of Theorem 3 and is omitted here.)
Theorem 5: Suppose $a^{2}+3 b=0$ and u_{0} is known. Then

$$
u_{m}=(-1 / 27)^{m / 6} a^{m} u_{0} \text { for every } m \equiv 0 \bmod 6
$$

If u_{k} is also known for some k not congruent to 0 modulo 6 , then u_{m} is determined for all $m \geq 0$. Explicitly,

$$
u_{2}=a u_{1}-\left(a^{2} / 3\right) u_{0}
$$

$$
u_{3}=\left(2 a^{2} / 3\right) u_{1}-\left(a^{3} / 3\right) u_{0}
$$

$$
u_{4}=\left(\alpha^{3} / 3\right) u_{1}-\left(2 a^{4} / 9\right) u_{0}
$$

$$
u_{5}=\left(\alpha^{4} / 9\right) u_{1}-\left(a^{5} / 9\right) u_{0}
$$

and $\quad u_{m}=\left(-a^{6} / 27\right)^{i} u_{j}$,
for $m=6 i+j=0,1,2,3,4,5$.
Proof: (The proof is similar to that of Theorem 3 and is omitted here.)
Second-order sequences for which $u_{1} \neq 0$ and $u_{0}=u_{n}=0$ for some $n \geq 2$ are of special interest, since in this case $F_{n}(\alpha, B)=0$, so that Theorem 1 does not apply. Theorem 6 describes such sequences. [To see that $F_{n}(a, b)=0$, note that the recurrence $u_{m}=a u_{m-1}+b u_{m-2}$ gives

$$
u_{2}=a u_{1}, \quad u_{3}=a u_{2}+b u_{1}=\left(a^{2}+b\right) u_{1}=u_{1} F_{3}(a, b)
$$

and by induction, $\left.u_{n}=u_{1} F_{n}(\alpha, b).\right]$
Theorem 6: Let $F_{n}(x, y)$ denote the nth Fibonacci polynomial, where $n \geq 2$. If $u_{1}=0$ and $u_{0}=u_{n}=0$, then $F_{n}(\alpha, b)=0$, and there exist nonzero real numbers c, r and positive integers p, q such that

$$
u_{m}=c r^{m} \sin m p \pi / q
$$

where n is an integer multiple of q, for $m=0,1, \ldots$.
Proof: From the Binet representation for the general term of a second-order homogeneous recurrence sequence,

$$
u_{m}=w \alpha^{m}+z \bar{\alpha}^{m}
$$

It is easy to check that z must be a complex conjugate of w, so, after writing $\omega=\alpha+b i$ and $\alpha=r(\cos \theta+i \sin \theta)$, we have
$u_{m}=(\alpha+b i) r^{m}(\cos m \theta+i \sin m \theta)+(\alpha-b i) r^{m}(\cos m \theta-i \sin m \theta)$
$=2 r^{m}(a \cos m \theta-b \sin m \theta)$.
Now a must equal 0 , since $u_{0}=0$, and $\sin n \theta$ must equal 0 , since $u_{n}=0$. It follows that θ must be of the form $p \pi / q$, where n is a multiple of q. Thus, the asserted form for u_{m} has been demonstrated. Since u_{m} is not uniquely determined, Theorem 1 shows that $F(a, b)=0$ (as was already proved differently just before the statement of Theorem 6).

Sequences of Higher Order

The method of proof of Theorem 1 extends readily to recurrence sequences of arbitrary order $k \geq 2$, as indicated by Theorem 7 .
Theorem 7: Suppose $k \geq 2$, and suppose $c_{0}, c_{1}, \ldots, c_{k-1}$ are complex numbers satisfying $c_{k-1} \neq 0$. A set of k terms,

$$
u_{0}, u_{m_{1}}, u_{m_{2}}, \ldots, u_{m_{k-1}},
$$

where $0<m_{1}<m_{2}<\ldots<m_{k-1}$, uniquely determine all the terms of a recurrence sequence given by

$$
\begin{equation*}
u_{n}=c_{k-1} u_{n-1}+c_{k-2} u_{n-2}+\cdots+c_{0} u_{n-k} \tag{2}
\end{equation*}
$$

if and only if the matrix M defined below is nonsingular: let N denote the $\left(m_{k-1}-k+1\right) \times\left(m_{k-1}+1\right)$ matrix $\left(\alpha_{i j}\right)$ given by

$$
\alpha_{i j}= \begin{cases}c_{j-i+1} & \text { for } j=i-1, i, \ldots, i+k-2 \\ -1 & \text { for } j=i+k-1 \\ 0 & \text { for all remaining } j, 0 \leq j \leq m_{k-1}\end{cases}
$$

for $i=1,2, \ldots, m_{k-1}-k+1$,
and define M to be the $\left(m_{k-1}-k+1\right) \times\left(m_{k-1}-k+1\right)$ matrix obtained by deleting from N the columns numbered $0, m_{1}, m_{2}, \ldots, m_{k-1}$.
Proof: Equation (2) generates, for $n=k, k+1, \ldots, m_{k-1}$, a system of m_{k-1} $k+1$ equations of the form

$$
\begin{equation*}
c_{k-1} u_{n-1}+c_{k-2} u_{n-2}+\cdots+c_{0} u_{n-k}-u_{n}=0 . \tag{3}
\end{equation*}
$$

If all the terms $u_{0}, u_{1}, u_{2}, \ldots, u_{m_{k-1}}$ are regarded as unknowns, then the coefficient matrix of the system is N. If $u_{0}, u_{m_{1}}, u_{m_{2}}, \ldots, u_{m_{k-1}}$ are now regarded as known, and accordingly transposed to the right-hand side of each of the equations (3), then the coefficient matrix of the resulting system is M. By Cramer's Rule, this system has a unique solution if and only if $|M| \neq 0$.

As an example, consider a third-order recurrence

$$
u_{n}=a u_{n-1}+b u_{n-2}+c u_{n-3},
$$

and suppose u_{0}, u_{1}, and u_{m} are known. (In the notation of Theorem $6, k=3$, $m_{1}=1$, and $m_{2}=m_{0}$) Define $T_{1}=1, T_{2}=\alpha$, and find for $m=4$ that

$$
N_{4}=\left[\begin{array}{ccccr}
c & b & a & -1 & 0 \\
0 & c & b & a & -1
\end{array}\right],
$$

which on deletion of columns 0,1 , and 4 leaves

$$
M_{4}=\left[\begin{array}{rr}
a & -1 \\
b & a
\end{array}\right]
$$

with determinant $a^{2}+b$. Define $T_{3}=a^{2}+b$. For $m=5$,

$$
N_{5}=\left[\begin{array}{rrrrrr}
c & b & a & -1 & 0 & 0 \\
0 & c & b & a & -1 & 0 \\
0 & 0 & c & b & a & -1
\end{array}\right] \text { yie1ds } M_{5}=\left[\begin{array}{rrr}
a & -1 & 0 \\
b & a & -1 \\
c & b & a
\end{array}\right],
$$

with determinant $T_{4} \equiv a T_{3}+b T_{2}+c T_{1}$. Continuing with $m=6,7,8, \ldots$, we obtain recursively a sequence of trivariate polynomials:

SETS OF TERMS THAT DETERMINE ALL THE TERMS OF A LINEAR RECURRENCE SEQUENCE

$$
T_{m}=a T_{m-1}+b T_{m-2}+c T_{m-1}
$$

Since, for example, $T_{4}(1,-1,1)=0$, Theorem 6 tells us that u_{0}, u_{1}, and u_{5} are not sufficient to determine all the terms of a sequence obeying the recurrence $u_{n}=u_{n-1}-u_{n-2}+u_{n-3}$. On the other hand, as $T_{5}(1,-1,1) \neq 0$, the terms u_{0}, u_{1}, and u_{6} do determine the entire sequence.

Reference

1. C. Kimberling. "Generalized Cyclotomic Polynomials, Fibonacci Cyclotomic Polynomials, and Lucas Cyclotomic Polynomials." Fibonacci Quarterly 18.2 (1980):108-26.
