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A second-order linear homogeneous recurrence sequence UQ, U\9 U29 ... is 
defined by a recurrence relation un = aun-\ + bun-2f where a and b are complex 
numbers with b * 0, and two initial terms UQ and u\. We raise the following 
question: for given a and b, what sets of terms, other than UQ and U\9 are 
sufficient to determine the entire sequence? We shall see that any two terms 
are often sufficient, but not always. A comparable result will then be 
presented for recurrences of higher order. 

Suppose a and b are given and Vp and Vq, where p < q9 are known terms of a 
sequence satisfying vm - avm-\ + bvm-2, Then the terms u0 and un of the 
sequence defined by um = Vm + p9 where n = q - p, are known. Accordingly, with-
out loss of generality, we recast the original question as follows: under what 
conditions on a3 b3 and n do tine values of u0 and un determine the values of um 
for all m > 0? 

The answer depends on a sequence of bivariate polynomials defined recur-
sively by Fm(x9 y) = xFm_l(x9 y) + yFm_2{x9 y), beginning with Fl(x, y) = 1 and 
F2(x9 y) = x. These are often called Fibonacci -polynomials; indeed, Fm(l9 1) 
is the mth- Fibonacci number. 

Theorem 1: Suppose a and b are complex numbers satisfying Fn(a, b) * 0, where 
b * 0 and Fn(x, y) denotes the Fibonacci polynomial of degree n - 1 in x. Then 
UQ and un determine um for all m > 0. 

Proof: If n - 1, then the recurrence um - aum-\ + bum-2 determines um inductively 
for all m > 0. 

If n = 2, then the equation u2 - ou\ + bu$ yields U\- (u2 - buQ)/a, so that 
U\ and hence all um are determined. [Note that a * 0, since a = F2(a9 b).] 

For n > 3, we have a system us = aus-\ + bus-2 of n - 1 equations, for s -
2, 3, ..., n. Write the first of these as au\ - u2 = -buQ9 the last as bun-2 + 
awn_i = un9 and all the others as bus-2 + aws_i - us = 0. As an example, for 
n - 5, we have 

au\ - u2 = -Z?UQ 
Z?MI + a^2 - «3 - 0 
Z?̂ 2 + au$ - Ui+ = 0 

bu-$ + aw^ = W5. 

The coefficient matrix of this system, 

[" a -1 0 0 1 
\b a -1 0 

0 Z? a - 1 
[ 0 0 b a \ 

clearly has determinant F$(a9 b) given by Laplace expansion about the first 
column: aF^(af b) + bF$(a9 b). 

For the general case, n > 3, it easy to see, inductively, that the deter-
minant of the coefficient matrix is Fn{a9 b). Accordingly, if Fn(a, b) * 0, 
then the system has a unique solution. In particular, u\ is determined, so 
that um is determined for all m > 0. 

244 [Aug. 



SETS OF TERMS THAT DETERMINE ALL THE TERMS OF A LINEAR RECURRENCE SEQUENCE 

Theorem 2: Suppose u$ and un are known for some n > 1. Suppose5 further, that 
a1lb is a nonzero integer and one of the following holds: 

(i) a2-j'b does not equal -1, -~2, or -3; 
(ii) if n E 0 mod 3, then a2 + b * 0; 
(iii) if n E 0 mod 4, then a2 + 2D * 0; 
(iv) if ft E 0 mod 6, then a2 + 3& * 0. 

Then w,„ is determined for all 77? > 0. 

Proof: The polynomial Fn (x9 y) is an even function in x if n is odd, and odd in 
x if n is even. Accordingly, by the Fundamental Theorem of Algebra, this 
polynomial factors in the form 

fn(x2, y) = (x2 - c1y)(x2 - o2y) -.. (x2 - c r _];,y) 

if ft is odd? and xfn-i(x2 , y ) if ft is even, where Ci is a complex number for 
£ = 1, 2, . . . , ft™ 1. 

If a2//3 is a nonzero integer /-c, then a2 - kb = 0, so that ĉ  = a2lb for some 
i. Thus, x2 - (a2lb)y divides Fn(^3 y). 

It is known ([1], Theorem 6) that the only divisors of Fn(x9 y) over the 
ring T[^s 2/] that have degree 2 in x are the three second-degree Fibonacci™ 
cyclotomic polynomials: x2 + y9 x2 + 2z/5 .x2 + 3y, and that these are divisors 
if and only if n is divisible by 3, 4, or 6, respectively. Therefore, except 
for the four recognized cases, we have Fn{a9 b) * 0, so that, by Theorem 1, um 
is determined for all 777 > 0, 

Theorem 3: Suppose a2 + b = 0 and UQ is known* Then um = {-a)mu§ for every 
m E 0 mod 3. Also, if u^ is known for some k not congruent to 0 modulo 3, then 
um is determined for all m > 0» In fact, 

(1) um = (-a3)^-, 

for m = 3i + j 5 J = 0, 1, 2, where w2 = awi - a2u$» 

Proof: First, we shall establish equation (1). The statements 

u3i = (-l){a3tiiG3 7 3̂i + i = (-l^a3tul5 and W3i + 2 = (~l)'la3'lU2 
are clearly true for i = 0* Assume them true for arbitrary £ > 0. Then 

w3t + 3 = aw3i+2 + ^3i + l 

= a(-V)za3tU2 - a 2 ( - l ) ^ a 3 ^ W l 

= ( - l ) i a 3 i + 1 ( w 2 - awx) 

= ( - l ) i a 3 i + 1 ( - a 2 w 0 ) 

= ( ~ l ) i + 1 a 3 i + 3 u 0 , 

and, s i m i l a r l y , 
u 3 i + i+ = (~l)i + la3i + 3u1 and w3.. + 5 = (-1)* 

By i n d u c t i o n , t h e r e f o r e , 

um = (-a3)7"wJ- for 777 = 3 i + J , J = 0, 1, 2 . 
Now equation (1) shows that UQ determines those um for which m is a multiple of 
3, and no others. However, if u^i+i is also known for some £, then 

so that iq is determined, and hence wm is determined for all 777 > 0. A similar 
argument obviously applies if Un-+2 ^s known for some i* 
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Theorem 4: Suppose a2 + 2b = 0 and UQ is known. Then 

um = (-l/4)m/4 amu$ for every m = 0 mod 4. 

If uk is also known for some k not congruent to 0 modulo 4, then um is deter-
mined for all m > 0. In fact, 

um = {~ah I kYu^ for m = 4i + j, j = 0, 1, 2, 3, 

where w2 = â i - (a2/2)uQ and W3 = (a2/2)ui - (a3/2)uQ. 

Proof: (The proof is similar to that of Theorem 3 and is omitted here.) 

Theorem 5: Suppose a2- + 3b = 0 and WQ is known. Then 

um = (~l/27)m/samu0 for every m E 0 mod 6. 

If Uj. is also known for some /c not congruent to 0 modulo 6, then um is deter-
mined for all rn > 0. Explicitly, 

u2 = au1 - (a2/3)uQ9 

u3 = (2a2/3)u1 - (a3/3)wQ5 
y3/o\,. _ On^l (a6/3)u1 - (2a^/9)uQ, 

0' i5 = (ai+/9)w1 - (a5/9)w 

and wm = (-a6/27)^ w-, 

for /?? = 6i + j = 0, 1, 2, 3, 45 5. 

Proof: (The proof is similar to that of Theorem 3 and is omitted here.) 

Second-order sequences for which u\ * 0 and UQ = un = 0 for some n > 2 are 
of special interest, since in this case Fn{ai b) - 0, so that Theorem 1 does not 
apply. Theorem 6 describes such sequences. [To see that Fn(as b) = 0, note 
that the recurrence u = au -> + bum 0 gives 

u2 = aw1? w3 = aw2 + ̂ i = (&2 + 2?)^ = w1^3(a, 2?), 

and by induction, wn = U j ^ (a, 2?) . ] 

Theorem 6: Let Fn(x, y) denote the nth Fibonacci polynomial, x̂ here n > 2. If 
U\ - 0 and WQ = un ~ ®> then Fn (a, 2?) = 0, and there exist nonzero real numbers 
c> r and positive integers p, q such that 

u^ = cvm sin mp-n/q, 

where n is an integer multiple of q, for 777 = 0, 1, ... . 

Proof: From the Binet representation for the general term of a second-order 
homogeneous recurrence sequence, 

um = wam + zEm. 

It is easy to check that z must be a complex conjugate of W, so, after writing 
w - a + bi and a = r(cos 0 + i sin G), we have 

um = (a + bi)rm(cos mQ + i s i n 7776) + (a - bi)rm(cos mQ - i s i n 7?70) 
= 2rm(a cos mQ - b sin 7726) . 

Now a must equal 0, since u0 = 0, and sin nQ must equal 0, since un = 0. It 
follows that 0 must be of the form pn/q* where n is a multiple of g. Thus, the 
asserted form for um has been demonstrated. Since um is not uniquely deter-
mined, Theorem 1 shows that F (a, b) = 0 (as was already proved differently just 
before the statement of Theorem 6). 

246 [Aug. 



SETS OF TERMS THAT DETERMINE ALL THE TERMS OF A LINEAR RECURRENCE SEQUENCE 

Sequences of Higher Order 

The method of proof of Theorem 1 extends readily to recurrence sequences of 
arbitrary order k > 2, as indicated by Theorem 7, 

Theorem 7: Suppose k > 2, and suppose 
satisfying cfc_1 ̂  0. A set of k terms, 

, are complex numbers 

ur un un u„ 
where 0 < m\ < m^ < ••• < flfy-ij uniquely determine all the terms of a recurrence 
sequence given by 

(2) w„ Ck-lUn-l + Ck-ZUn-Z + + CnU. O^n-k 
if and only if the matrix M defined below is nonsinguiar: let N denote the 
(m-k-i - k + 1) x (fflfc-i + 1) matrix (a^-) given by 

(°j-i + i f o r i s t - 1» i, ..., t + fc - 2 
a^j = <-1 for j = i + k - 1 

(0 for all remaining j, 0 < j < m^-i, 

for i = 1, 2, ...,mfc_i-/c+l, 

and define M to be the (flfy-i ~ ?C + 1) x Ofc_i - /c + 1) matrix obtained by delet-
ing from N the columns numbered 0, 777 ]_, ̂ J . «., ^k-l-
Proof: Equation (2) generates, for n = k, k + I, 
k + 1 equations of the form 

(3) C_iM 

If all the terms u$ 

. ., m^-i, a system of in^-i 

k~lun-l + Ck-2Un~2 
^2' 

+ C0Wn-fe - w = 0. 

"•mk 
are regarded as unknowns, then the coef-

ficient matrix of the system is N. If u$5 um , um2, ..., umk„i a r e n o w regarded 
as known, and accordingly transposed to the right-hand side of each of the 
equations (3), then the coefficient matrix of the resulting system is M. By 
Cramerfs Rule, this system has a unique solution if and only if \M\ * 0. 

As an example, consider a third-order recurrence 

un = aun_l + bun_2 + cun_s, 
and suppose UQ, Mi, and um are known. (In the notation of Theorem 6, k = 3, 
Wx = 1, and m2 = m.) Define !?]_ = 1, T2 = a, and find for 77? = 4 that 

0 

-1 

which on deletion of columns 0, 1, and 4 leaves 

-1 
ML 

+ b. For m = 5, 

a 

2? a 

with determinant a2- + b. Define T3 

with determinant Tu = ^ 3 + M ^ + £^V Continuing with m = 6, 7, 8, 
obtain recursively a sequence of trivariate polynomials: 

0 
0 
0 

b 
0 
0 

a 
b 
c 

- 1 
a 
b 

0 
- 1 

a 

0 
0 

-1 
yields % = 

a 
2> 
c 

- 1 
a 
b 

0 
-1 

a 
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Tm = aTm.r + bTm„z + cT,,,-!. 
Since, for example, 5̂ .(1, -1, 1) = 0, Theorem 6 tells us that UQ, U\y and u^ are 
not sufficient to determine all the terms of a sequence obeying the recurrence 
un = un~\ - ^n-2 + un~3- ®n t n e other hand, as ̂ 5(1, -1, 1) * 0, the terms UQ? 
U\i and u§ do determine the entire sequence. 
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