A COMBINATORIAL INTERPRETATION OF THE SQUARE OF A LUCAS NUMBER

John Konvalina and Yi-Hsin Liu
University of Nebraska at Omaha, NE 68182 (Submitted October 1989)

1. Introduction

The Fibonacci numbers have a well-known combinatorial interpretation in terms of the total number of subsets of $\{1,2,3, \ldots, n\}$ not containing a pair of consecutive integers. Recently, Konvalina \& Liu [4] showed that the squares of the Fibonacci numbers have a combinatorial interpretation in terms of the total number of subsets of $\{1,2,3, \ldots, 2 n\}$ without unit separation. Two integers are called uniseparate if they contain exactly one integer between them. For example, the following pairs of integers are uniseparate: (1, 3), $(2,4),(3,5),(4,6)$, etc.

In this paper, we will show that the squares of the Lucas numbers also have a combinatorial interpretation in terms of subsets of $\{1,2, \ldots, 2 n\}$ without unit separation if the integers $\{1,2,3, \ldots, 2 n\}$ are arranged in a circle instead of a line.

Let F_{n} denote the $n^{\text {th }}$ Fibonacci number determined by the recurrence relation:

$$
F_{1}=1, F_{2}=1, F_{n+2}=F_{n+1}+F_{n} \quad(n \geq 1) .
$$

Kaplansky [2] showed that the numbers of k-subsets of $\{1,2,3, \ldots, n\}$ not containing a pair of consecutive integers is

$$
\left(n+\frac{1}{k}-k\right)
$$

Summing over all k-subsets, we obtain the well-known identity

$$
\begin{equation*}
\sum_{k \geq 0}\binom{n+1-k}{k}=F_{n+2} \tag{1}
\end{equation*}
$$

Let $f(n, k)$ denote the number of k-subsets of $\{1,2,3, \ldots, n\}$ without unit separation. Konvalina [3] proved

$$
f(n, k)=\left\{\begin{array}{cl}
\sum_{i=0}^{[k / 2]}(n+1-k-2 i \tag{2}\\
k-2 i
\end{array}\right) \text { if } n \geq 2(k-1), ~\left(\begin{array}{cl}
& \text { if } n<2(k-1) \\
0 &
\end{array}\right.
$$

Summing over all k-subsets, Konvalina \& Liu [4] showed

$$
\sum_{k \geq 0} f(n, k)=\left\{\begin{array}{cl}
F_{m+2}^{2} & \text { if } n=2 m \tag{3}\\
F_{m+2} F_{m+3} & \text { if } n=2 m+1
\end{array}\right.
$$

Next, let L_{n} denote the $n^{\text {th }}$ Lucas number determined by the recurrence relation:

$$
L_{1}=1, L_{2}=3, L_{n+2}=L_{n+1}+L_{n} \quad(n \geq 1)
$$

The following identity expressing a Lucas number in terms of the sum of two Fibonacci numbers is well known (see Hoggatt [1]):

$$
\begin{equation*}
L_{n}=F_{n+1}+F_{n-1} \tag{4}
\end{equation*}
$$

The Lucas numbers have a combinatorial interpretation in terms of the total number of subsets of $\{1,2,3, \ldots, n\}$ arranged in a circle and not containing a pair of consecutive integers (n and 1 are consecutive). One way to prove this is as follows: Kaplansky [2] showed that the number of K-subsets of $\{1,2$, $3, \ldots, n\}$ arranged in a circle and not containing a pair of consecutive integers is

$$
\begin{equation*}
\frac{n}{k}\binom{n-k-1}{k-1}=\binom{n-k}{k}+\binom{n-k-1}{k-1} \tag{5}
\end{equation*}
$$

Summing over all k-subsets and applying (1) and (4), we obtain:

$$
\sum_{k \geq 0} \frac{n}{k}\binom{n-k-1}{k-1}=\sum_{k \geq 0}\binom{n-k}{k}+\sum_{k \geq 0}\binom{n-k-1}{k-1}=F_{n+1}+F_{n-1}=L_{n}
$$

2. The Main Result

Let $g(n, k)$ denote the number of k-subsets of $\{1,2,3, \ldots, n\}$ arranged in a circle and without unit separation. Konvalina [3] proved the following identity:

$$
\begin{equation*}
g(n, k)=f(n-2, k)+2 f(n-5, k-1)+3 f(n-6, k-2) \tag{6}
\end{equation*}
$$

Let C_{n} denote the total number of subsets of $\{1,2,3, \ldots, n\}$ arranged in a circle and without unit separation. The following result relates the square of a Lucas number and $C_{2 m}$.
Theorem: If $n>2$, then

$$
C_{n}= \begin{cases}L_{m}^{2} & \text { if } n=2 m \\ L_{n} & \text { if } n=2 m+1\end{cases}
$$

Proof: Summing over all k-subsets and applying (6), we have

$$
\begin{equation*}
C_{n}=\sum_{k \geq 0} g(n, k)=\sum_{k \geq 0} f(n-2, k)+2 f(n-5, k-1)+3 f(n-6, k-2) \tag{7}
\end{equation*}
$$

Even Case: $n=2 m$
Applying identity (3) to (7), we obtain

$$
\begin{aligned}
C_{n} & =\sum_{k \geq 0} f(n-2, k)+2 \sum_{k \geq 0} f(n-5, k-1)+3 \sum_{k \geq 0} f(n-6, k-2) \\
& =F_{m+1}^{2}+2 F_{m-1} F_{m}+3 F_{m-1}^{2} \\
& =F_{m+1}^{2}+2 F_{m-1}\left(F_{m}+F_{m-1}\right)+F_{m-1}^{2} \\
& =\left(F_{m+1}+F_{m-1}\right)^{2}=L_{m}^{2}
\end{aligned}
$$

Odd Case: $n=2 m+1$
Applying identity (3) to (7), we have

$$
\begin{aligned}
C_{n} & =F_{m+1} F_{m+2}+2 F_{m}^{2}+3 F_{m-1} F_{m} \\
& =F_{m+1} F_{m+2}+2 F_{m}\left(F_{m}+F_{m-1}\right)+F_{m-1} F_{m} \\
& =F_{m+1} F_{m+2}+2 F_{m} F_{m+1}+F_{m-1} F_{m} \\
& =\left(F_{m+1} F_{m+2}+F_{m} F_{m+1}\right)+\left(F_{m} F_{m+1}^{\prime}+F_{m-1} F_{m}\right) \\
& =F_{2 m+2}+F_{2 m}=L_{2 m+1}=L_{n}
\end{aligned}
$$

Note: We have applied the following known identity (see [1], p. 59, identity \bar{I}_{26} with $\left.m=n-1\right): F_{2 n}=F_{n} F_{n+1}+F_{n-1} F_{n}$ 。

References

1. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin, 1969.
2. I. Kaplansky. Solution of the "Probleme des menages." Bull. Amer. Math. Soc. 49 (1943):784-85.
3. J. Konvalina. "On the Number of Combinations without Unit Separation." J. Combin. Theory, Ser. A 31 (1981):101-07.
4. J. Konvalina \& Y.-H. Liu. "Subsets without Unit Separation and Products of Fibonacci Numbers." Fibonacci Quarterly (to appear).
