mULTIPLICATIVE PARTITIONS OF BIPARTITE NUMBERS

Bruce M. Landman
University of North Carolina at Greensboro, NC 27412
Raymond N. Greenwell
Hofstra University, Hempstead, NY 11550
(Submitted September 1989)

1. Introduction

For a positive integer n, let $f(n)$ be the number of multiplicative partitions of n. That is, $f(n)$ represents the number of different factorizations of n, where two factorizations are considered the same if they differ only in the order of the factors. For example, $f(12)=4$, since $12=6 \cdot 2=4 \cdot 3=3 \cdot 2 \cdot 2$ are the four multiplicative partitions of 12. Hughes \& Shallit [2] showed that $f(n) \leq 2 n^{\sqrt{2}}$ for all n. Mattics \& Dodd [3] improved this to $f(n) \leq n$, and in [4] they further improved this to $f(n) \leq n / \log (n)$ for $n \neq 144$. In this paper, we generalize the notion of multiplicative partitions to bipartite numbers and obtain a corresponding bound.

By a j-partite number, we mean an ordered j-tuple (n_{1}, \ldots, n_{j}), where all n_{i} are positive integers. Bipartite refers to the case $j=2$. We can extend the idea of multiplicative partitions to bipartite numbers as follows. For positive integers m and n, define $f_{2}(m, n)$ to be the number of different ways to write (m, n) as a product $\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right) \ldots\left(a_{k}, b_{k}\right)$, where the multiplication is done coordinate-wise, all α_{i} and b_{i} are positive integers, (1, 1) is not used as a factor of $(m, n) \neq(1,1)$, and two such factorizations are considered the same if they differ only in the order of the factors. Hence, $(2,1)(2,1)(1,4)$ and $(1,4)(2,1)(2,1)$ are considered the same factorizations of $(4,4)$, while $(2,1)(2,1)(1,4)$ and $(1,2)(1,2)(4,1)$ are considered different. Thus, for example, $f_{2}(6,2)=5$, since the five multiplicative partitions $(6,2)$ are

```
(6, 2) = (6, 1) (1, 2) = (3, 2) (2, 1) = (3, 1) (2, 2)
    =(3, 1)(2, 1)(1, 2).
```

It is clear that $f(n)=f_{2}(n, 1)$ for all n. In Section 2 , we give an upper bound for $f_{2}(m, n)$. The definition of $f_{2}(m, n)$ may be extended to $f_{j}\left(n_{1}, \ldots\right.$, n_{j}) in an obvious way.

Throughout this paper, unless otherwise stated, $p_{1}=2, p_{2}=3, \ldots$ will represent the sequence of primes.

2. An Upper Bound for $f_{2}(m, n)$

When first considering the function $f_{2}(m, n)$, some conjectures immediately came to mind:
(1) $f_{2}(m, n)=f(m) f(n)$
(2) $f_{2}(m, n) \leq f(m) f(n)$
(3) $f_{2}(m, n)=f(m n)$
(4) $f_{2}(m, n) \leq f(m n)$
(5) $f_{2}(m, n) \leq m n / \log (m n)$
(6) $f_{2}(m, n) \leq m n$.

Surprisingly, none of these is true. The values $f(2)=1, f(6)=2, f(12)=4$, and $f_{2}(6,2)=5$ provide counterexamples to (1)-(5). As it turns out, (6) is also false (see Section 3).

In the next theorem, we establish an upper bound on $f_{2}(m, n)$. We will first need the following three lemmas.

Lemma 1: Let $\left\{p_{1}, \ldots, p_{j}\right\},\left\{q_{1}, \ldots, q_{k}\right\}$, and $\left\{r_{1}, \ldots, r_{j+k}\right\}$ each be a set of distinct primes, and let

$$
x=p_{1}^{a_{1}} \ldots p_{j}^{a_{j}}, \quad y=q_{1}^{b_{1}} \ldots q_{k}^{b_{k}}, \quad z=r_{1}^{a_{1}} \ldots r_{j}^{a_{j}} r_{j+1}^{b_{1}} \ldots r_{j+k}^{b_{k}},
$$

where all α_{i} and b_{i} are positive integers. Then, $f(z)=f_{2}(x, y)$.
Proof: With each factorization

$$
z=\left[\begin{array}{llll}
r_{1}^{c_{11}} & r_{2}^{c_{12}} & \ldots & r_{j+k}^{c_{1, k}^{j+k}}
\end{array}\right]\left[\begin{array}{llllll}
r_{1}^{c_{21}} & r_{2}^{c_{22}} & \ldots & r_{j+k}^{c_{2, j}+k}
\end{array}\right] \ldots\left[\begin{array}{lll}
r_{1}^{c_{t 1}} & \ldots & r_{j+k}^{c_{t, k}^{j+k}}
\end{array}\right]
$$

we associate the following factorization of (x, y) :

$$
\left[p_{1}^{c_{11}} \ldots p_{j}^{c_{1 j}}, q_{1}^{c_{1, j+1}} \ldots q_{k}^{c_{1, j+k}}\right] \ldots\left[\begin{array}{lllll}
p_{1}^{c_{t 1}} & \ldots & p_{j}^{c_{t j}}, q_{1}^{c_{t, j+1}} \ldots & \left.q_{k}^{c_{t, j+k}}\right] .
\end{array}\right.
$$

This association is obviously a one-to-one correspondence.
Lemma 1 can easily be extended to j-partite numbers. Thus, for example, $f_{2}(12,4)=f(180)=f_{3}(4,4,2)=f_{2}(36,2)$.

It is well known that
(a) $p_{n}>n \log n$ for $n \geq 1$, and
(b) $p_{n}<n(\log n+\log \log n)$ for $n \geq 6$ (see [5]).

As a consequence, we have the following lemma.
Lemma 2: For $n \geq 4, p_{2 n-1} p_{2 n}<p^{2.97}$.
Proof: Direct computation shows the inequality holds for $n=4,5$, and 6 . Note that, for $n \geq 7$,
$(2 n-1)(\log (2 n-1)+\log \log (2 n-1)) 2 n(\log 2 n+\log \log 2 n)<(n \log n)^{2.97}$. Thus, from (a) and (b) above, $p_{2 n-1} p_{2 n}<(n \log n)^{2.97}<p^{2.97}$.
Lemma 3: Let $c_{1} \geq c_{2} \geq \ldots \geq c_{k}>0$. Then

$$
\prod_{i=1}^{k}\left[p_{2 i-1} p_{2 i}\right]^{c_{i}}<\prod_{i=1}^{k} p_{i}^{3.032 c_{i}}
$$

Proof: If $k=1$, the inequality holds, since $p_{1} p_{2}<p_{1}^{2.585}$. For $k=2$, since $p_{3} p_{4}<p_{2}^{3.237}$, we have

$$
\left[p_{1} p_{2}\right]^{c_{1}}\left[p_{3} p_{4}\right]^{c_{2}}<p_{1}^{2.585 c_{1}} p_{2}^{3.237 c_{2}}\left[p_{1}^{4 c_{1}} / p_{2}^{252 c_{2}}\right]=\left[p_{1}^{c_{1}} p_{2}^{c_{2}}\right]^{2.985} .
$$

If $k=3$,

$$
\begin{align*}
\prod_{i=1}^{3}\left[p_{2 i-1} p_{2 i}\right]^{c_{i}} & <\left[p_{1}^{c_{1}} p_{2}^{c_{2}}\right]^{2.985} p_{3}^{3.084 c_{3}}\left[p_{1}^{c_{1}} p_{2}^{c_{2}}\right] \cdot 047 / p_{3}^{.052 c_{3}} \tag{1}\\
& =\prod_{i=1}^{3} p_{i}^{3.032 c_{i}}
\end{align*}
$$

If $k \geq 4$, the inequality follows easily from (1) and Lemma 2.
Theorem 1: Let m and n be positive integers with (m, n) $\neq(1,1)$. Then

$$
f_{2}(m, n)<(m n)^{1.516} / \log (m n) .
$$

Proof: We can assume that $m=p_{1}^{a_{1}} \ldots p_{k}^{a_{k}}$ and $n=p_{1}^{b_{1}} \ldots p_{r}^{b_{r}}$, where $k \geq r$ and $a_{i} \geq a_{i+1}, b_{i} \geq b_{i+1}$ for each i. Then, by Lemma 1 ,

$$
f_{2}(m, n)=f\left(p_{1}^{a_{1}} p_{2}^{b_{1}} p_{3}^{a_{2}} p_{4}^{b_{2}} \cdots p_{2 k-1}^{a_{k}} p_{2 k}^{b_{k}}\right)
$$

where $b_{i}=0$ if $i>r$. For $i=1, \ldots, k$, let
$\alpha_{i}=\max \left\{a_{i}, b_{i}\right\}, \beta_{i}=\min \left\{a_{i}, b_{i}\right\}, c_{i}=\left(\alpha_{i}+b_{i}\right) / 2$.
We first consider the case in which

$$
\prod_{i=1}^{k} p_{2 i-1}^{\alpha_{i}} p_{2 i}^{\beta_{i}} \neq 144
$$

Then, by Lemmas 1 and 3 and the known bound for $f(n)$,

$$
\begin{aligned}
f_{2}(m, n) & =f\left[p_{1}^{\alpha_{1}} p_{2}^{\beta_{1}} p_{3}^{\alpha_{2}} p_{4}^{\beta_{2}} \ldots p_{2 k-1}^{\alpha_{k}} p_{2 k}^{\beta_{k}}\right] \leq \frac{\prod_{i=1}^{k}\left[p_{2 i-1}^{\alpha_{i}} p_{2 i}^{\beta_{i}}\right]}{\log \left[\prod_{i=1}^{k}\left[p_{2 i-1}^{\alpha_{i}} p_{2 i}^{\beta_{i}}\right]\right]} \\
& \leq \frac{\prod_{i=1}^{k}\left[p_{2 i-1}^{\alpha_{i}} p_{2 i}^{\beta_{i}}\right]}{\log (m n)} \leq \frac{\prod_{i=1}^{k}\left(p_{2 i-1} p_{2 i}\right)^{c_{i}}}{\log (m n)} \leq \frac{\prod_{i=1}^{k} p_{i}^{3.032 c_{i}}}{\log (m n)} \\
& =\frac{\prod_{i=1}^{k}\left(p_{i}^{a_{i}+b_{i}}\right)}{\log (m n)}=\frac{(m n)^{1.516}}{\log (m n)}
\end{aligned}
$$

In case $\prod_{i=1}^{k} p_{2 i-1}^{\alpha_{i}} p_{2 i}^{\beta_{i}}=144$, it then follows by Lemma 1 that $m n \geq 2^{6}$. Noting that $f(144)=29$, we see that the theorem is true in this case as well.

3. Remarks and Computations

3.1. Using the algorithm from [1], the values of $f_{2}(m, n)$ were found for all m and n such that $m n \leq 2,000,000$ and for other selected values of m and n with $m n$ as large as $167,961,600$ by calculating the corresponding values of f as described in Lemma 1. Since large values of m and n tended to give the greatest values for the ratio $f_{2}(m, n) / m n$, and since these are the values that require the greatest computing time, we used the observations made in Remark 3.2 below to determine which pairs (m, n) to study.
3.2. Using the notation in the proof of Theorem 1 , the pairs (m, n) can be described by the ordered $2 k$-tuple $a_{1} b_{1} \ldots a_{k} b_{k}$. In Table I below, we use this notation to list those $2 k$-tuples we have found for which there exist ordered pairs (m, n) having ratios $r\left(a_{1} b_{1} \ldots a_{k} b_{k}\right)=f_{2}(m, n) / m n>1.5$ [given the $2 k-$ tuple, m and n are chosen so as to maximize $f_{2}(m, n)$].

TABLE I. Forms Yielding Large Ratios $f_{2}(m, n) / m n$

$a_{1} b_{1} \ldots a_{k} b_{k}$	$f_{2}(m, n)$	$f_{2}(m, n) /(m, n)$
663311	$162,075,802$	2.17115
772211	$61,926,494$	1.86652
762211	$30,449,294$	1.83553
662211	$15,173,348$	1.82935
872211	$119,957,268$	1.80781
553311	$33,439,034$	1.79179
862211	$58,256,195$	1.75589
652211	$7,126,811$	1.71846
752211	$14,096,512$	1.69952
553211	$10,511,373$	1.68971
552211	$3,400,292$	1.63980
643311	$30,428,542$	1.63047
962211	$107,097,889$	1.61401
852211	$26,610,876$	1.60415
643211	$9,584,844$	1.54077
554411	$255,339,989$	1.52023
543311	$14,162,812$	1.51779

MULTIPLICATIVE PARTITIONS OF BIPARTITE NUMBERS

The prevalence of the forms $a \alpha b b 11$ in the table is noteworthy. Although the forms $(a+1)(a-1) b b 11$ also appear, the ratio is higher for aabbll. Similarly, the forms $(\alpha+1) \alpha b b 11$ have higher ratios than $(\alpha+2)(\alpha-1) b b 11$. We suspect that sequences of the form $\alpha a b b c c 11$ also have large ratios, but the lengthy computation time made this infeasible to verify. A result which helps explain the prevalence of trailing 1^{\prime} s in the sequence $\alpha_{1} b_{1} \ldots \alpha_{k} b_{k}$ is as follows: Let

$$
j= \begin{cases}2 k & \text { if } b_{k} \neq 0 \\ 2 k-1 & \text { if } b_{k}=0\end{cases}
$$

and let $c_{1} \ldots c_{j}$ denote $a_{1} b_{1} \ldots a_{k} b_{k}$. Then, if $1 \leq i \leq 2 k$,

$$
\begin{aligned}
& {\left[6 p_{[(i+2) / 2]} / 5 p_{[(j+1) / 2]}\right] \quad r\left(c_{1} \cdots c_{i} \cdots c_{j}\right)} \\
& \leq r\left(c_{1} \cdots c_{i-1} c_{i+1} \cdots c_{j 1}\right) \text { when } c_{i} \geq 2
\end{aligned}
$$

where [] denotes the greatest integer function. This result follows easily from the lemma on page 22 of [1].
3.3. For the more general function $f_{j}\left(n_{1}, \ldots, n_{j}\right)$, note that

$$
f_{j}\left(q_{1}, \ldots, q_{j}\right)=f\left(p_{1}, \ldots, p_{j}\right)=B(j)
$$

where $B(j)$ is the j th $B e l l$ number and the q_{i} are any primes. ($B(j)$ grows very fast. See, e.g., [6].)
3.4. If we set

$$
f_{2}(m, n)=(m n)^{\alpha} / \log (m n)
$$

then, for all m and n for which $f_{2}(m, n)$ was calculated, $\alpha<1.251$. The largest value of α occurred when $m=n=24$ with $f_{2}(24,24)=444$. (This was the only case in which $\alpha>5 / 4$.) Based on these data, we propose the following
Conjecture: $f_{2}(m, n)<(m n)^{1.251} / \log (m n)$ for all m and n.

References

1. E. R. Canfield, P. Erdös, \& C. Pomerance. "On a Problem of Oppenheim Concerning 'Factorisatio Numerorum.'" J. Number Theovy 17 (1983):1-28.
2. J. F. Hughes \& J. O. Shallit. "On the Number of Multiplicative Partitions." Amer. Math. Monthly 90 (1983):468-71.
3. L. E. Mattics \& F. W. Dodd. "A Bound for the Number of Multiplicative Partitions." Amer. Math. Monthly 93 (1986):125-26.
4. L. E. Mattics \& F. W. Dodd. "Estimating the Number of Multiplicative Partitions." Rocky Mountain J. of Math. 17 (1987):797-813.
5. B. Rosser \& L. Schoenfeld. "Approximate Formulas for Some Functions of Prime Numbers." IZZ. J. Math. 6(1962):64-94.
6. G. T. Williams. "Numbers Generated by the Function $e^{e^{x-1}}$." Amer. Math. Monthly 52 (1945):323-27.
