# SECOND-ORDER RECURRENCES AND THE SCHRÖDER-BERNSTEIN THEOREM 

## Calvin Long

Washington State University, Pullman, WA 99164

## John Bradshaw

Cariboo College, Kamloops, BC V2B 5J3, Canada
(Submitted August 1989)

## 1. Introduction

The Schröder-Bernstein theorem states that if $f$ is a one-to-one mapping of $X$ into $Y$ and $g$ is a one-to-one mapping of $Y$ into $X$, then there exists a one-toone mapping $\hbar$ of $X$ onto $Y$; see, for example, [1].

The proof of the theorem involves the construction of three disjoint subsets of $X$ satisfying certain criteria. Applied to a specific example, the subsets produced are unions of intervals bounded by ratios of successive Fibonacci and Lucas numbers and the singleton $\{2 /(1+\sqrt{5})\}$ where $(1+\sqrt{5}) / 2$ is the golden ratio. More generally, the subsets produced are the unions of intervals bounded by ratios of successive elements of two general second-order recurrence sequences with the same characteristic equation and the singleton $\{1 / \alpha\}$ where $\alpha$ denotes the positive root of the characteristic equation of the given recurrence.

As usual, we define the Fibonacci and Lucas sequences for all $n$ by
(1) $\quad F_{0}=0, F_{1}=1, F_{n+2}=F_{n+1}+F_{n}$
and
(2) $\quad L_{0}=2, L_{1}=1, L_{n+2}=L_{n+1}+L_{n}$.

We further define the sequences $\left\{H_{n}\right\}$ and $\left\{K_{n}\right\}$ for all $n$ by

$$
\begin{equation*}
H_{0}=c, H_{1}=a c, H_{n+2}=a H_{n+1}+b H_{n} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{0}=d, K_{1}=e, K_{n+2}=a K_{n+1}+b K_{n} \tag{4}
\end{equation*}
$$

where $a, b, c, d$, and $e$ are positive. Since we will need it later, we further require that
(5) $\quad a>\frac{e}{d}$.

## 2. Proof of the Schröder-Bernstein Theorem

Before showing how it is related to second-order recurrences, we outline the proof of the Schröder-Bernstein theorem.

With $f$ and $g$ as defined, let $g(Y)$ be the subset of $X$ that is the image of $Y$ under $g$. Let $A_{0}=X-g(Y)$ and let $A_{n}=g\left(f\left(A_{n-1}\right)\right)$ for each integer $n \geq 1$. Let $f(X)$ be the subset of $Y$ that is the image of $X$ under $f$, let $B_{0}=g(Y-f(X))$, and let $B_{n}=g\left(f\left(B_{n-1}\right)\right)$ for all $n \geq 1$. Finally, set

$$
A=\bigcup_{i=0}^{\infty} A_{i}, \quad B=\bigcup_{i=0}^{\infty} B_{i}, \quad \text { and } \quad X_{\infty}=X-(A \cup B)
$$

Then it is not difficult to show that $A, B$, and $X_{\infty}$ are disjoint, that

$$
X=A \cup B \cup X_{\infty}
$$

and that the function $h$, defined by

$$
h(x)=\left\{\begin{array}{l}
f(x) \text { for } x \in A \cup X_{\infty}, \\
g^{-1}(x) \text { for } x \in B
\end{array}\right.
$$

is a one-to-one mapping from $X$ onto $Y$.

## 3. An Example Involving Second-Order Recurrences

Theorem 1: Let $X=(0,2), Y=(1, \infty), f(x)=x+1$, and $g(y)=1 / y$. Then the sets $A_{n}, B_{n}$, and $X_{\infty}$ of the proof of the Schröder-Bernstein theorem are given by the following:

$$
\begin{align*}
& A_{n}=\left\{\begin{array}{ll}
{\left[\frac{F_{n+1}}{F_{n+2}}, \frac{L_{n}}{L_{n+1}}\right)} & n \geq 0, n \text { even }, \\
\left(\frac{L_{n}}{L_{n+1}}, \frac{F_{n+1}}{F_{n+2}}\right] & n \geq 0, n \text { odd }, \\
B_{n}= \begin{cases}\left(\frac{F_{n}}{F_{n+1}}, \frac{L_{n+1}}{L_{n+2}}\right] & n \geq 0, n \text { even }, \\
{\left[\frac{L_{n+1}}{L_{n+2}}, \frac{F_{n}}{F_{n+1}}\right)} & n \geq 0, n \text { odd },\end{cases}
\end{array} . \begin{array}{l}
\end{array}\right. \tag{6}
\end{align*}
$$

and

$$
\begin{equation*}
X_{\infty}=\left\{\frac{2}{1+\sqrt{5}}\right\} \tag{8}
\end{equation*}
$$

More generally, the following theorem holds.
Theorem 2: Let $a, b, c, d, e,\left\{H_{n}\right\}_{n \geq 0}$, and $\left\{K_{n}\right\}_{n \geq 0}$ be as in the introduction. Let $X=(0, d / e), Y=(\alpha, \infty), f(x)=b x+\alpha, g(y)=1 / y$, and $H_{-1}=0$. Then the sets $A_{n}, B_{n}$, and $X_{\infty}$ of the proof of the Schroder-Bernstein theorem are given by

$$
\begin{align*}
& A_{n}= \begin{cases}{\left[\frac{H_{n}}{H_{n+1}}, \frac{K_{n}}{K_{n+1}}\right)} & n \geq 0, n \text { even }, \\
\left(\frac{K_{n}}{K_{n+1}}, \frac{H_{n}}{H_{n+1}}\right] & n \geq 0, n \text { odd },\end{cases}  \tag{9}\\
& B_{n}= \begin{cases}\left(\frac{H_{n-1}}{H_{n}}, \frac{K_{n+1}}{K_{n+2}}\right] & n \geq 0, n \text { even }, \\
{\left[\frac{K_{n+1}}{K_{n+2}}, \frac{H_{n-1}}{H_{n}}\right)} & n \geq 0, n \text { odd },\end{cases} \tag{10}
\end{align*}
$$

and
(11) $\quad X_{\infty}=\left\{\frac{2}{a+\sqrt{a^{2}+4 b}}\right\}$.

Before proving these theorems, it will be convenient to prove the following lemmas.

Lemma 1: If $f, g,\left\{H_{n}\right\}$, and $\left\{K_{n}\right\}$ are as defined in Theorem 2, then

$$
g\left(f\left(\frac{H_{n-1}}{H_{n}}\right)\right)=\frac{H_{n}}{H_{n+1}} \quad \text { and } \quad g\left(f\left(\frac{K_{n}}{K_{n+1}}\right)\right)=\frac{K_{n+1}}{K_{n+2}}
$$

for all $n \geq 0$.

Proof: Since $g(f(x))=1 /(b x+a)$,

$$
g\left(f\left(\frac{H_{n-1}}{H_{n}}\right)\right)=\frac{1}{b \cdot \frac{H_{n-1}}{H_{n}}+\alpha}=\frac{H_{n}}{b H_{n-1}+a H_{n}}=\frac{H_{n}}{H_{n+1}}
$$

by (3). Note that this is even true for $n=0$, since $H_{-1}=0$ is consistent with (3). Similarly, we show that

$$
g\left(f\left(\frac{K_{n}}{K_{n+1}}\right)\right)=\frac{K_{n+1}}{K_{n+2}}
$$

Lemma 2: For the sequences $\left\{H_{n}\right\}$ and $\left\{K_{n}\right\}$ as defined in Theorem 2, the following inequalities hold.
(12) $\frac{H_{n}}{H_{n+1}}>\frac{K_{n+1}}{K_{n+2}} \quad n \geq 0, n$ even,

$$
\begin{equation*}
\frac{H_{n}}{H_{n+1}}<\frac{K_{n+1}}{K_{n+2}} \quad n \geq 0, n \text { odd } \tag{13}
\end{equation*}
$$

Proof: Since $\alpha, b, c, d$, and $e$ are positive, it follows from (3) and (4) that

$$
\frac{H_{0}}{H_{1}}=\frac{c}{a c}>\frac{e}{a e+b d}=\frac{K_{1}}{K_{2}}
$$

Since $g(f(x))=1 /(b x+\alpha)$ is a decreasing function and

$$
f\left(\frac{H_{0}}{H_{1}}\right)=\frac{H_{2}}{H_{1}} \quad \text { and } \quad f\left(\frac{K_{1}}{K_{2}}\right)=\frac{K_{3}}{K_{2}}
$$

it follows that

$$
\frac{H_{1}}{H_{2}}<\frac{K_{2}}{K_{3}}
$$

and the argument for all $n \geq 0$ is easily completed by induction.
Lemma 3: If $X, A_{n}$, and $B_{n}$ are defined as in Theorem 2, then

$$
X-\left[\left(\bigcup_{i=0}^{n} A_{i}\right) \cup\left(\bigcup_{i=0}^{n} B_{i}\right)\right]= \begin{cases}\left(\frac{K_{n+1}}{K_{n+2}}, \frac{H_{n}}{H_{n+1}}\right) & n \geq 0, n \text { even } \\ \left(\frac{H_{n}}{H_{n+1}}, \frac{K_{n+1}}{K_{n+2}}\right) & n \geq 0, n \text { odd }\end{cases}
$$

Proof: For $n=0$, it follows from (3) and (4) that

$$
A_{0} \cup B_{0}=\left[\frac{H_{0}}{H_{1}}, \frac{K_{0}}{K_{1}}\right) \cup\left(\frac{H_{-1}}{H_{0}}, \frac{K_{1}}{K_{2}}\right]=\left[\frac{c}{a c}, \frac{d}{e}\right) \cup\left(\frac{0}{c}, \frac{e}{a e+b d}\right]
$$

Thus, since $X=(0, d / e)$ and $e /(a e+b d)<c / a c$ as above,

$$
X-\left(A_{0} \cup B_{0}\right)=\left(\frac{e}{a e+b d}, \frac{c}{a c}\right)=\left(\frac{K_{1}}{K_{2}}, \frac{H_{0}}{H_{1}}\right)
$$

as claimed. Assume that, for $k$ even,

$$
X-\left[\left(\bigcup_{i=0}^{k} A_{i}\right) \cup\left(\bigcup_{i=0}^{k} B_{i}\right)\right]=\left(\frac{K_{k+1}}{K_{k+2}}, \frac{H_{k}}{H_{k+1}}\right)
$$

Then, since $H_{k+1} / H_{k+2}<K_{k+2} / K_{k+3}$ by Lemma 2, it follows that

$$
X-\left[\left(\bigcup_{i=0}^{k+1} A_{i}\right) \cup\left(\bigcup_{i=0}^{k+1} B_{i}\right)\right]=\left(\frac{K_{k+1}}{K_{k+2}}, \frac{H_{k}}{H_{k+1}}\right)-\left(\frac{K_{k+1}}{K_{k+2}}, \frac{H_{k+1}}{H_{k+2}}\right]-\left[\frac{K_{k+2}}{K_{k+3}}, \frac{H_{k}}{H_{k+1}}\right)=
$$

$$
=\left(\frac{H_{k+1}}{H_{k}+2}, \frac{K_{k+2}}{K_{k+3}}\right)
$$

This proves the result for $k+1$. The proof for $k+2$, which completes the induction, is the same as for $k+1$ except that it requires the inequality

$$
\frac{K_{k}+3}{K_{k+4}}<\frac{H_{k}+2}{H_{k}+3}
$$

which also follows from Lemma 2 , since $k$ is even.
Proof of Theorem 2: As in the sketch of the proof of the Schröder-Bernstein theorem, we consider

$$
\begin{aligned}
& g(Y)=g((a, \infty))=\left(0, \frac{1}{a}\right) \\
& A_{0}=X-g(Y)=\left(0, \frac{d}{e}\right)-\left(0, \frac{1}{a}\right)=\left[\frac{1}{a}, \frac{d}{e}\right)=\left[\frac{H_{0}}{H_{1}}, \frac{K_{0}}{K_{1}}\right)
\end{aligned}
$$

by (3) and (4), since $1 / a<d / e$ by (5). Now, assume that

$$
A_{k}=\left[\frac{H_{k}}{H_{k+1}}, \frac{K_{k}}{K_{k+1}}\right)
$$

where $k \geq 0$ is even. Then

$$
A_{k+1}=g\left(f\left(A_{k}\right)\right)=g\left(f\left(\left[\frac{H_{k}}{H_{k+1}}, \frac{K_{k}}{K_{k+1}}\right)\right)\right)=\left(\frac{K_{k+1}}{K_{k}+2}, \frac{H_{k+1}}{H_{k}+2}\right]
$$

by Lemma 1 since, as noted above, $g(f(x))$ is a decreasing function. Repeating this argument with $k+1$ replacing $k$, we have that

$$
A_{k+2}=\left[\frac{H_{k}+2}{H_{k}+3}, \frac{K_{k}+2}{K_{k}+3}\right)
$$

Thus, by mathematical induction, the $A_{n}$ are as described in (9). Moreover, we note that we have also shown that

$$
\frac{H_{n}}{H_{n+1}}<\frac{K_{n}}{K_{n+1}} \text { for } n \text { even } \text { and } \frac{H_{n}}{H_{n+1}}>\frac{K_{n}}{K_{n+1}} \text { for } n \text { odd. }
$$

To prove (10), we recall from the sketch of the Schröder-Bernstein theorem that

$$
\begin{aligned}
B_{0} & =g(Y-f(X))=g\left((\alpha, \infty)-f\left(\left(0, \frac{d}{e}\right)\right)\right)=g\left((\alpha, \infty)-\left(a, \frac{b d+a e}{e}\right)\right) \\
& =g\left(\left[\frac{b d+a e}{e}, \infty\right)\right)=\left(0, \frac{e}{b d+a e}\right]=\left(\frac{H_{-1}}{H_{0}}, \frac{K_{1}}{K_{2}}\right]
\end{aligned}
$$

since we take $H_{-1}=0$ as noted in the proof of Lemma 1 . The proof of (10) is now completed by induction exactly like the proof of (9). Finally, to prove (11), we use Lemma 3. As in the sketch of the Schröder-Bernstein theorem

$$
\begin{aligned}
X_{\infty} & =X-(A \cup B) \\
& =X-\left[\left(\bigcup_{i=0}^{\infty} A_{i}\right) \cup\left(\bigcup_{i=0}^{\infty} B_{i}\right)\right]=\lim _{n \rightarrow \infty}\left\{X-\left[\left(\bigcup_{i=0}^{n} A_{i}\right) \cup\left(\bigcup_{i=0}^{n} B_{i}\right)\right]\right\} \\
& =\lim _{n \rightarrow \infty}\left\{\begin{array}{l}
\left(\frac{K_{n+1}}{K_{n+2}}, \frac{H_{n}}{H_{n+1}}\right) n \text { even, }=\{1 / \alpha\} \\
\left(\frac{H_{n}}{H_{n+1}}, \frac{K_{n+1}}{K_{n+2}}\right) n \text { odd, }
\end{array}\right.
\end{aligned}
$$

where $\alpha=\left(\alpha+\sqrt{\alpha^{2}+4 b}\right) / 2$, since it is well known that

$$
\lim _{n \rightarrow \infty} \frac{K_{n+1}}{K_{n}}=\lim _{n \rightarrow \infty} \frac{H_{n+1}}{H_{n}}=\alpha
$$

## SECOND-ORDER RECURRENCES AND THE SCHRÖDER-BERNSTEIN THEOREM

the positive root of the characteristic equation of the recurrences in (3) and (4). This completes the proof of Theorem 2.

It is interesting to note that, since $\alpha$ is a root of $x^{2}=\alpha x+b$,

$$
f(g(\alpha))=\alpha+\frac{b}{\alpha}=\frac{\alpha \alpha+b}{\alpha}=\frac{\alpha^{2}}{\alpha}=\alpha
$$

and

$$
g\left(f\left(\frac{1}{\alpha}\right)\right)=\frac{1}{(b / \alpha)+\alpha}=\frac{\alpha}{b+a \alpha}=\frac{\alpha}{\alpha^{2}}=\frac{1}{\alpha}
$$

so that $\alpha$ is a fixed point of $f(g(x))$ and $1 / \alpha$ is a fixed point of $g(f(x))$.
Proof of Theorem 1: This follows immediately from Theorem 2 by taking $a=b=$ $c=e=1$ and $d=2$.

Of course, similar results obtain for the $P e l l$ and other well-known sequences by other appropriate choices of $\alpha, b, c, d$, and $e$.

## Reference

1. George F. Simmons. Introduction to Topology and Modern Analysis. New York: McGraw-Hill, 1963, pp. 29-30.
