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1. Introduction 

The Schroder-Bernstein theorem states that if f is a one-to-one mapping of 
X into J and g is a one-to-one mapping of Y into Xs then there exists a one-to-
one mapping h of X onto J; see, for example, [1]. 

The proof of the theorem involves the construction of three disjoint sub-
sets of X satisfying certain criteria. Applied to a specific example, the sub-
sets produced are unions of intervals bounded by ratios of successive Fibonacci 
and Lucas numbers and the singleton {2/(1 + v5)} where (1 + v5)/2 is the golden 
ratio. More generally, the subsets produced are the unions of intervals 
bounded by ratios of successive elements of two general second-order recurrence 
sequences with the same characteristic equation and the singleton {1/a} where a 
denotes the positive root of the characteristic equation of the given 
recurrence. 

As usual, we define the Fibonacci and Lucas sequences for all n by 

(1) F0 = 0, Fj_ - 1 , Fn + 2 = Fn+l + Fn 

and 

(2) LQ = 2, L]_ = 1 , Ln + 2 = Ln+i + Ln. 

We further define the sequences {Hn} and {Kn} for all n by 

(3) #0 = c, Hl = ac, Hn+Z = aHn+i + bHn 

and 

(4) KQ = d, K1 = e, Kn+2 = aKn + 1 + bKn 

where a, b, c, d9 and e are positive. Since we will need it later, we further 
require that 

(5) a > % 

2. Proof of the Schroder-Bernstein Theorem 

Before showing how it is related to second-order recurrences, we outline 
the proof of the Schroder-Bernstein theorem. 

With / and g as defined, let g(Y) be the subset of X that is the image of Y 
under g. Let AQ = X - g(Y) and let An= g(f(An-.{)) for each integer n > 1. Let 
f(X) be the subset of Y that is the image of X under /, let BQ = g(Y- f(X)) , and 
let Bn = g{f{Bn_l)) for all n > 1. Finally, set 

A = 0 A., B = (j B-, and X„ = X - (A U B) . 

Then it is not difficult to show that A9 B9 and Xm are disjoint, that 

X = A u B u Xm9 
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h(x) 

and that the function h, defined by 

{f(x) for x e A u X^, 

_ 1 ( x ) for x e B, 

is a one-to-one mapping from X onto J. 

3 . An Example I n v o l v i n g S e c o n d - O r d e r R e c u r r e n c e s 

Theorem 1: Let X = (0 , 2 ) , J = ( 1 , «>), / ( x ) = x + 1, and #(z/) = 1/z/. Then the 
s e t s An, Bn, and Z^ of the proof of the S c h r o d e r - B e r n s t e i n theorem a r e g iven by 
the f o l l o w i n g : 

(6) 

(7) 

and 

(8) 

-n + l Ly 

L^n + 29 Ln+l 

/ Ln Fn+ll 
\Ln+i* Fn+2j 

/ Fn Ln+l 
\Fn+i9 Ln + 2 

'Ln+\ Fn 

_Ln + 2' Fn+\ 

ll + /5i' 

n > 0, n even, 

n > 0, n odd, 

n > 0, n even, 

n > 0, n odd, 

More generally, the following theorem holds. 

Theorem 2: Let a, 2?, c, d, e, {Hn}n>o> anc* "t̂ n̂ n>o b e a s i n t n e introduction. 
Let X = (0, ̂ /e), Y = (a, «>), f(x) = bx + a, g(y) = 1/y, and H_l = 0. Then the 
sets An, Bn, and X^ of the proof of the Schroder-Bernstein theorem are given by 

(9) 

(10) Bn 

and 

(11) Xa 

n > 0, n even, 
tin *n \ 

n + l &n+l/ 

I Kn Hn 1 
i-p , 77 n > 0, n odd, 
\Kn+l ^n + lJ 

(En-l # n + il 
i-77—, 77 n > 0, n even 
\ hn Kn + 2J 

77 , -77—1 n > 0, n odd, 

I I 1. 
U + /a2 + 4£J 

Before proving these theorems, it will be convenient to prove the following 
lemmas. 

Lemma 1: If /, g, {Hn}, and {Kn} are as defined in Theorem 2, then 

/Fn-l\\ %n I J %n \ \ %n + l 
9\" J\EnJ) Hn+1

 u\J\Kn + l)J Kn+2 

for all n > 0. 
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Proof: Since g(f(x)) = l/(bx + a ) , 

M^fr)) - -t^i— 
b • — 5 — + a 

tiy, 

Hn Hy, 

bHn_l + aHn Hn + l 

by (3). Note that this is even true for n - 0, since #_]_ - 0 is consistent with 
(3). Similarly, we show that 

/ / Kn \\ = ^n+1 

Lemma 2: For the sequences {#n} and {Zn} as defined in Theorem 2, the follow-
ing inequalities hold. 

(12) 

(13) 

H« 
Hn + l 

Hn+1 

Kn+2 

Kn + 2 

n > 0, n even, 

n > 0S n odd. 

Proof: Since a, bs e, d9 and e are positive, it follows from (3) and (4) that 

El = JL
 e = El 

Hi ao ae + bd K2' 

Since g(f(x)) = l/(bx + a) is a decreasing function and 

AT) = 17 and f(^) 
it follows that 

1 K2 
< 

H 
Ho K* 

and the argument for all n > 0 is easily completed by induction. 

Lemma 3: If X, An, and Bn are defined as in Theorem 2, then 

n > 0, n even, 

n > 0, n odd. 

X 

V^n+l' Kn+2/ 

An U 
R _ r t ZQ\ /#_I £1-1 _ r_̂  d\ /0 e 1 

0 " L !̂9 z j U \ # o ' ^zJ U c J e / U \c> ae + M J e 

Proof: For n = 0, i t follows from (3) and (4) that 
' Q 

\_ac' 

Thus, since J = (0, die) and el {ae + M ) < c/ac? as above, 

as claimed. Assume that, for k even, 
k \"i /-̂ fe + l 

J - :(&.KO„«<)] - (& &)• 
Then, since Hk+i/Hk + 2 < Kk + 2lKk + 3 bY Lemma 2, it follows that 

[ U Ai) U [ \J Bi)\ = I •= , Tr J" [J? . 77 
Hi, Kk+2 
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/ Hk + l Kk + 2 
\Bk + 2' Kk + 3JC 

This proves the result for k + 1. The proof for k + 2, which completes the in-
duction, is the same as for k + 1 except that it requires the inequality 

K; k + 3 Hk + 2 < 
"k+3 Kk + L Hj 

which also follows from Lemma 2, since k is even. 

Proof of Theorem 2: As in the sketch of the proof of the Schroder-Bernstein 
theorem, we consider 

and 
g(Y) = gUa, »)) = (o, ±) 

An = X gw. (0> | ) . {0, i ) . [i. | ) . r#o £o 
Ul' K\ 

by (3) and (4), since l/a < die by (5). Now, assume that 

H = 
By Kt 

LHk+1* Kk+i/9 

where k ^ 0 is even. Then 

\+l - Gif{Ak)) = g[f\ 
By Ky Kk + 1 B k + 1 

\lBk+is Kk + l) ) j \Kk + 29 Hk + 2J 
by Lemma 1 s i n c e , as noted above, g(f(x)) i s a d e c r e a s i n g f u n c t i o n . Repeat ing 
t h i s argument wi th k+1 r e p l a c i n g k, we have t h a t 

" Bk + 2 #& + 2 N 
4 + 2 

^ + 3* Kk + 3 

Thus, by mathematical induction, the An are as described in (9). Moreover, we 
note that we have also shown that 

Bn 

Bn + l 
Kn 

for n even and 
Bn Kn 

for n odd. 
%n +1 Bn+ 1 Kn +1 

To prove (10), we recall from the sketch of the Schroder-Bernstein theorem that 

bd + ae\ 30 = gtf - f(X)) - g(ia, -) - f((o. f ))) - *((a, -) - (a, ^ ^ ) ) 

= g([M +
e

 ae> «)) - (0. M ^ ] = (̂ . 
since we take #_]_ = 0 as noted in the proof of Lemma 1. The proof of (10) is 
now completed by induction exactly like the proof of (9) . Finally, to prove 
(11), we use Lemma 3. As in the sketch of the Schroder-Bernstein theorem 

^co X - (A u B) 

= X - |( CjAi 
i= 0 (MB<)] 

( (Kn+l Bn \ 

lim < ^Kn+2-' Rrt + \) 
n > 0 0 ) / Hn Kn + 1\ 

\\Bn+l' Kn+l) 

limU 
n •> 00 ( i=0 / \i= 0 ) 

even, 
{l/a}, 

n odd, 

where a = (a + /a2 + 4&)/2, since it is well known that 

lim 
%n + l 

lim 
#n + l 

a, 
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m) 

the positive root of the characteristic equation of the recurrences in (3) and 
(4). This completes the proof of Theorem 2, 

It is interesting to note that3 since a is a root of x2 = ax + b9 

r?, , NN . b aa + b a2 

f(a(a)) = a + - = = — = a 
J y a a a 

and 
1 _ q __ _o_ _ 1_ 

(b/a) + a b + aa a2 a 
so that a is a fixed point of f(g(x)) and 1/a is a fixed point of g(f(x)). 
Proof of Theorem 1: This follows immediately from Theorem 2 by taking a = b = 
c = e = 1 and <i = 2. 

Of course3 similar results obtain for the Pell and other well-known sequen-
ces by other appropriate choices of a, b9 c9 d3 and g. 
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