SOME CONVOLUTION-TYPE AND CONBINATORIAL IDENTITIES PERTAINING TO BINARY LINEAR RECURRENCES

Neville Robbins

San Francisco State University, San Francisco, CA 94132
(Submitted September 1989)

Introduction

Let sequences $\left\{r_{n}\right\}$ and $\left\{s_{n}\right\}$ be defined for $n \geq 0$. Letting

$$
t_{n}=\sum_{k=0}^{n} r_{k} s_{n-k},
$$

we obtain a sequence $\left\{t_{n}\right\}$ which is called the convolution of $\left\{r_{n}\right\}$ and $\left\{s_{n}\right\}$. In keeping with the ideas of V. E. Hoggatt, Jr. [7], one may define iterated convolution sequences as follows:

$$
r_{n}^{(0)}=r_{n} ; \quad r_{n}^{(j)}=\sum_{k=0}^{n} r_{k} r_{n-k}^{(j-1)} \text { for } j \geq 1 \text {. }
$$

In particular, if $\left\{F_{n}\right\}$ denotes the Fibonacci sequence, then

$$
F_{n}^{(1)}=\sum_{k=0}^{n} F_{k} F_{n-k}
$$

is the convolution of the Fibonacci sequence with itself. Hoggatt [7] obtained the generating function:

$$
x /\left(1-x-x^{2}\right)^{j+1}=\sum_{n=0}^{\infty} F_{n}^{(j)} x^{n} .
$$

The convolved sequence $F_{n}^{(1)}$ was also considered by Bicknell [2] and by Hoggatt \& Bicknell-Johnson [8]. For related results, see also Bergum \& Hoggatt [1] and Horadam and Mahon [9].

Let primary and secondary binary linear recurrences be defined, respectively, by

$$
\begin{aligned}
& u_{0}=0, u_{1}=1, u_{n}=P u_{n-1}-Q u_{n-2} \text { for } n \geq 2 ; \\
& v_{0}=2, v_{1}=P, v_{n}=P v_{n-1}-Q v_{n-2} \text { for } n \geq 2,
\end{aligned}
$$

where P and Q are nonzero, relatively prime integers such that $D=P^{2}-4 Q \neq 0$. In this paper, we generalize prior results of Hoggatt and others by developing formulas for weighted convolutions of the type

$$
\sum_{k=0}^{n} f(n, k) r_{k} s_{n-k},
$$

where each of r_{n} and s_{n} is u_{n} or v_{n} and the weight function $f(n, k)$ is defined for $n \geq 0$ and $0 \leq k \leq n$ and satisfies the symmetry condition

$$
f(n, n-k)=f(n, k) \text { for all } k
$$

In addition, we prove some results about the sums

$$
\sum_{k=0}^{n}\binom{n}{k} u_{k} \quad \text { and } \quad \sum_{k=0}^{n}\binom{n}{k} v_{k} .
$$

SOME CONVOLUTION-TYPE AND COMBINATORIAL IDENTITIES PERTAINING TO BINARY LINEAR REGURRENCES

Preliminaries

Let the roots of the equation: $t^{2}-P t+Q=0$ be $a=\frac{1}{2}\left(P+D^{\frac{1}{2}}\right), \quad b=\frac{1}{2}\left(P-D^{\frac{1}{2}}\right)$,
so that
(1) $\quad a+b=P$
(2) $\quad a b=Q$
(3) $\quad a-b=D^{\frac{1}{2}}$
(4) $\quad u_{n}=\left(a^{n}-b^{n}\right) /(a-b)$
(5) $\quad v_{n}=a^{n}+b^{n}$
(6) $\quad v_{n}=2 u_{n+1}-P u_{n}$
(7) $\quad v_{n}=P u_{n}-2 Q u_{n-1}$
(8) $\quad v_{n}=u_{n+1}-Q u_{n-1}$
(9) $\quad t /\left(1-P t+Q t^{2}\right)=\sum_{n=0}^{\infty} u_{n} t^{n}$
(10) $\quad \sum_{k=0}^{n}\binom{n}{k}=2^{n}$
(11) $\quad \sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}$
$\sum_{k=0}^{n} k(n-k)=\frac{n^{3}-n}{6}$

$$
\begin{equation*}
\sum_{k=0}^{n} k^{2}(n-k)^{2}=\frac{n^{5}-n}{30} \tag{12}
\end{equation*}
$$

The Main Results
Theorem 1:
(a) $\sum_{k=0}^{n} u_{k} u_{n-k}=\frac{(n+1) v_{n}-2 u_{n+1}}{D}=\frac{n v_{n}-P u_{n}}{D}=\frac{(n-1) v_{n}-2 Q u_{n-1}}{D}$
(b) $\sum_{k=0}^{n}\binom{n}{k} u_{k} u_{n-k}=\frac{2^{n} v_{n}-2 P^{n}}{D}$

Proof: Without restriction on $f(n, k)$, (4) implies

$$
\begin{aligned}
\sum_{k=0}^{n} f(n, k) u_{k} u_{n-k} & =\sum_{k=0}^{n} f(n, k)\left(\frac{a^{k}-b^{k}}{a-b}\right)\left(\frac{a^{n-k}-b^{n-k}}{a-b}\right) \\
& =(a-b)^{-2} \sum_{k=0}^{n} f(n, k)\left(a^{n}+b^{n}-a^{k} b^{n-k}-a^{n-k} b^{k}\right) \\
& =D^{-1}\left(v_{n} \sum_{k=0}^{n} f(n, k)-\sum_{k=0}^{n} f(n, k)\left(a^{k} b^{n-k}+a^{n-k} b^{k}\right)\right)
\end{aligned}
$$

using (3) and (5).
(a) If $f(n, k)=1$, we get

$$
\sum_{k=0}^{n} u_{k} u_{n-k}=D^{-1}\left((n+1) v_{n}-\sum_{k=0}^{n}\left(a^{k} b^{n-k}+a^{n-k} b^{k}\right)\right)
$$

Now

$$
\begin{aligned}
\sum_{k=0}^{n} a^{k} b^{n-k} & =\sum_{k=0}^{n} a^{n-k} b^{k}=b^{n}\left(\frac{(a / b)^{n+1}-1}{(a / b)-1}\right)=\frac{a^{n+1}-b^{n+1}}{a-b}=u_{n+1} \\
\sum_{k=0}^{n} u_{k} u_{n-k} & =\frac{(n+1) v_{n}-2 u_{n+1}}{D}
\end{aligned}
$$

The other parts of (a) follow from (6) and (7), since

$$
\begin{aligned}
(n+1) v_{n}-2 u_{n+1} & =n v_{n}+v_{n}-2 u_{n+1}=n v_{n}-P u_{n} \\
& =(n-1) v_{n}+v_{n}-P u_{n}=(n-1) v_{n}-2 Q u_{n-1}
\end{aligned}
$$

(b) If $f(n, k)=\binom{n}{k}$, we get

$$
\begin{aligned}
\sum_{k=0}^{n}\binom{n}{k} u_{k} u_{n-k} & =D^{-1}\left(v_{n} \sum_{k=0}^{n}\binom{n}{k}-\sum_{k=0}^{n}\binom{n}{k}\left(a^{n-k} b^{k}+a^{k} b^{n-k}\right)\right) \\
& =D^{-1}\left(2^{n} v_{n}-2(a+b)^{n}\right)=\frac{2^{n} v_{n}-2 P^{n}}{D}
\end{aligned}
$$

using (1) and (10).
Theorem 2:
(a) $\sum_{k=0}^{n} v_{k} v_{n-k}=(n+1) v_{n}+2 u_{n+1}$
(b) $\sum_{k=0}^{n}\binom{n}{k} v_{k} v_{n-k}=2^{n} v_{n}+2 P^{n}$.

Proof: The proof is similar to that of Theorem 1, except that we use (5) instead of (4) 。

Theorem 3:

$$
w_{n-1}=\sum_{k=0}^{n} u_{k} u_{n-k} \text { for } n \geq 1
$$

if and only if $w_{0}=0, w_{1}=1, w_{n}=P w_{n-1}-Q w_{n-2}+u_{n}$ for $n \geq 2$.
Proof: (Sufficiency) Following Carlitz [4], let

$$
W(t)=\sum_{n=0}^{\infty} w_{n} t^{n}
$$

Then

$$
\begin{aligned}
\left(1-P t+Q t^{2}\right) W(t) & =w_{0}+\left(w_{1}-P w_{0}\right) t+\sum_{n=2}^{\infty}\left(w_{n}-P w_{n-1}+Q w_{n-2}\right) t^{n} \\
& =t+\sum_{n=2}^{\infty} u_{n} t^{n}=\sum_{n=0}^{\infty} u_{n} t^{n}=t /\left(1-P t+Q t^{2}\right)
\end{aligned}
$$

so $W(t)=t /\left(1-P t+Q t^{2}\right)^{2}$, from which it follows by (9) that

$$
w_{n-1}=\sum_{k=0}^{n} u_{k} u_{n-k}
$$

SOME CONVOLUTION-TYPE AND COMBINATORIAL IDENTITIES PERTAINING TO BINARY LINEAR RECURRENCES

$$
\begin{aligned}
& \text { (Necessity) (Induction on } n \text {). Let } \\
& w_{n-1}=\sum_{k=0}^{n} u_{k} u_{n-k} \text { for } n \geq 1 \text {. }
\end{aligned}
$$

By direct evaluation, we have

$$
w_{0}=0, w_{1}=1, w_{2}=2 P, w_{3}=3 P^{2}-2 Q
$$

Theorem 1 (a) implies $w_{n-1}=D^{-1}\left(n v_{n}-P u_{n}\right)$. Now

$$
P w_{1}-Q w_{0}+u_{2}=P(1)-Q(0)+P=2 P=w_{2}
$$

$$
P w_{2}-Q w_{1}+u_{3}=P(2 P)-Q(1)+\left(P^{2}-Q\right)=3 P^{2}-2 Q=w_{3}
$$

$$
P w_{n-1}-Q w_{n-2}=\frac{P}{D}\left(n v_{n}-P u_{n}\right)-\frac{Q}{D}\left((n-1) v_{n-1}-P u_{n-1}\right)
$$

$$
=\frac{1}{D}\left(P v_{n}+(n-1)\left(P v_{n}-Q v_{n-1}\right)-P\left(P u_{n}-Q u_{n-1}\right)\right)
$$

$$
=\frac{1}{D}\left(P v_{n}+(n-1) v_{n+1}-P u_{n+1}\right)
$$

$$
=\frac{1}{D}\left(P v_{n}-2 v_{n+1}+(n+1) v_{n+1}-P u_{n+1}\right)
$$

$$
=w_{n}-\frac{1}{D}\left(2 v_{n+1}-P v_{n}\right)
$$

But $2 v_{n+1}-P v_{n}=2\left(a^{n+1}+b^{n+1}\right)-(a+b)\left(a^{n}+b^{n}\right)=a^{n+1}+b^{n+1}-a b^{n}-a^{n} b=$ $\left(a^{n}-b^{n}\right)(a-b)=D u_{n}$. Therefore,

$$
P w_{n-1}-Q w_{n-2}+u_{n}=w_{n}-\frac{1}{D}\left(D u_{n}\right)+u_{n}=w_{n}
$$

Theorem 4: If

$$
x_{n}=\sum_{k=0}^{n} v_{k} v_{n-k} \text { for } n \geq 0
$$

then

$$
x_{0}=4, x_{1}=4 P, x_{n}=P x_{n-1}-Q x_{n-2}+D u_{n} \text { for } n \geq 2
$$

Proof: This is similar to the proof of Necessity in Theorem 3, and therefore is omitted here.
Lemma 1: Let $f(n, k)$ be a function such that $f(n, n-k)=f(n, k)$ for all k such that $0 \leq k \leq n$, where n and k are nonnegative integers. Then

$$
\sum_{k=0}^{n} Q^{k} f(n, k) u_{n-2 k}=0
$$

Proof: Let

$$
S_{n}=\sum_{k=0}^{n} Q^{k} f(n, k) u_{n-2 k}, n^{*}=\left[\frac{1}{2}(n-1)\right], S_{1}=\sum_{k=0}^{n^{*}} Q^{k} f(n, k) u_{n-2 k}
$$

Then

$$
S_{n}-S_{1}=\sum_{j=n-n *}^{n^{*}} Q^{j} f(n, j) u_{n-2 j}
$$

Letting $k=n-j$, we obtain

$$
S_{n}-S_{1}=\sum_{k=0}^{n^{*}} Q^{n-k} f(n, n-k) u_{2 k-n}=\sum_{k=0}^{n^{*}} f(n, k) Q^{n-k}\left(-u_{n-2 k} / Q^{n-2 k}\right)
$$

by (14), that is,

SOME CONVOLUTION-TYPE AND COMBINATORIAL IDENTITIES PERTAINING TO BINARY LINEAR RECURRENCES

$$
S_{n}-S_{1}=-\sum_{k=0}^{n^{*}} Q^{k} f(n, k) u_{n-2 k}=-S_{1} \text {, so } S_{n}=0 .
$$

Theorem 5: If $f(n, k)$ satisfies the hypothesis of Lemma 1 above, then

$$
\begin{aligned}
& \sum_{k=0}^{n} f(n, k) u_{k} v_{n-k}=u_{n}\left(\sum_{k=0}^{n} f(n, k)\right) \\
& \text { Proof: } \begin{aligned}
\sum_{k=0}^{n} f(n, k) u_{k} v_{n-k} & =\sum_{k=0}^{n} f(n, k)\left(\frac{a^{k}-b^{k}}{a-b}\right)\left(a^{n-k}+b^{n-k}\right) \\
& =\sum_{k=0}^{n} f(n, k)\left(\frac{a^{n}-b^{n}-a^{n-k} b^{k}+a^{k} b^{n-k}}{a-b}\right) \\
& =\sum_{k=0}^{n} f(n, k)\left(u_{n}-(\alpha b)^{k}\left(\frac{a^{n-2 k}-b^{n-2 k}}{a-b}\right)\right) \\
& =u_{n}\left(\sum_{k=0}^{n} f(n, k)\right)-\sum_{k=0}^{n} Q^{k} f(n, k) u_{n-2 k}=u_{n}\left(\sum_{k=0}^{n} f(n, k)\right),
\end{aligned}
\end{aligned}
$$

Corollary 1:
(a) $\sum_{k=0}^{n} u_{k} v_{n-k}=(n+1) u_{n}$
(b) $\sum_{k=0}^{n}\binom{n}{k} u_{k} v_{n-k}=2^{n} u_{n}$
(c) $\sum_{k=0}^{n}\binom{n}{k}^{2} u_{k} v_{n-k}=\binom{2 n}{n} u_{n}$
(d) $\sum_{k=0}^{n} k(n-k) u_{k} v_{n-k}=\left(\frac{n^{3}-n}{6}\right) u_{n}$
(e) $\sum_{k=0}^{n} k^{2}(n-k)^{2} u_{k} v_{n-k}=\left(\frac{n^{5}-n}{30}\right) u_{n}$

Proof: This follows from Theorem 5 and (10) through (13).
Theorem 6: Let u_{n} and v_{n} be the primary and secondary binary linear recurrences, respectively, with parameters P and Q, as defined in the introduction, and with discriminant $D=P^{2}-4 Q$. Define

$$
U_{n}=\sum_{k=0}^{n}\binom{n}{k} u_{k}, \quad V_{n}=\sum_{k=0}^{n}\binom{n}{k} v_{k} .
$$

Then, U_{n} and V_{n} are also primary and secondary binary linear recurrences, respectively, with parameters $P *=P+2, Q^{*}=P+Q+1$, and discriminant $D *=D$.
Proof:

$$
\begin{aligned}
U_{n}=\sum_{k=0}^{n}\binom{n}{k} u_{k} & =\sum_{k=0}^{n}\binom{n}{k}\left(\frac{a^{k}-b^{k}}{a-b}\right)=D^{-\frac{1}{2}}\left(\sum_{k=0}^{n}\binom{n}{k} a^{k}-\sum_{k=0}^{n}\binom{n}{k} b^{k}\right) \\
& =\frac{(a+1)^{n}-(b+1)^{n}}{a-b}=\frac{(a+1)^{n}-(b+1)^{n}}{(a+1)-(b+1)} .
\end{aligned}
$$

If we let $A=a+1, B=b+1$, then

$$
U_{n}=\frac{A^{n}-B^{n}}{A-B},
$$

a primary binary linear recurrence with parameters

$$
P *=A+B=(a+1)+(b+1)=(a+b)+2=P+2
$$

and
1991]

$$
Q^{*}=A B=(a+1)(b+1)=a b+(a+b)+1=P+Q+1
$$

Similarly, if

$$
V_{n}=\sum_{k=0}^{n}\binom{n}{k} v_{k},
$$

then $V_{n}=A^{n}+B^{n}$, a secondary binary linear recurrence with A and B as above. Furthermore,

$$
\begin{aligned}
D^{*} & =\left(P^{*}\right)^{2}-4 Q^{*}=(P+2)^{2}-4(P+Q+1) \\
& =P^{2}+4 P+4-4 P-4 Q-4=P^{2}-4 Q=D .
\end{aligned}
$$

Theorem 7: Let $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ be primary and secondary binary linear recurrences with discriminant $D>0$. Then there exists a positive integer, m, such that

$$
\sum_{k=0}^{n}\binom{n}{k} u_{k}=u_{m n}, \quad \sum_{k=0}^{n}\binom{n}{k} v_{k}=v_{m n}
$$

if and only if $m=2, u_{n}=F_{n}, v_{n}=L_{n}$.
Proof: To prove sufficiency, we note that, if $P=-Q=1$, so that $u_{n}=F_{n}$, $v_{n}=$ L_{n}, then $a^{2}=a+1=A, b^{2}=b+1=B$, so that Theorem 6 implies

$$
\begin{aligned}
& \sum_{k=0}^{n}\binom{n}{k} u_{k}=\frac{A^{n}-B^{n}}{A-B}=\frac{a^{2 n}-b^{2 n}}{a-b}=u_{2 n} \\
& \sum_{k=0}^{n}\binom{n}{k} v_{k}=A^{n}+B^{n}=a^{2 n}+b^{2 n}=v_{2 n}
\end{aligned}
$$

To prove necessity, using the notation of Theorem 6, we note that hypothesis, (4), and (5) imply

$$
\frac{A^{n}-B^{n}}{a-b}=\frac{a^{m n}-b^{m n}}{a-b}, A^{n}+B^{n}=a^{m n}+b^{m n}
$$

Therefore, $A=a^{m}, B=b^{m}$, so that $a^{m}=a+1, b^{m}=b+1$. Let

$$
f_{m}(x)=x^{m}-x-1
$$

Then $f_{m}(\alpha)=f_{m}(b)=0$. If m is odd, then $f_{m}(x)$ has critical values at

$$
x= \pm m[-1 /(m-1)]
$$

It is easily verified that $f_{m}\left(\pm m^{[-1 /(m-1)]}\right)<0$. Therefore, $f_{m}(x)$ has a unique real root, so $\alpha=b$, which implies $D=0$, contrary to hypothesis. If m is even, then $f_{m}(x)$ has a minimum at $x=m^{[-1 /(m-1)], ~ a n d ~} f_{m}(m[-1 /(m-1)])<0$, so $f_{m}(x)$ has two real roots a and b with $a>b$. Now,

$$
f_{m}(-1)=1, f_{m}(0)=f_{m}(1)=-1, f_{m}(2)=2^{m}-3>0, \text { for } m \geq 2
$$

so we must have $-1<b<0$ and $1<a<2$. Therefore, $0<a+b<2$ and $-2<a b$ <0. Since $a+b$ and $a b$ must be integers, we have $P=a+b=1, Q=a b=-1$. It now follows that $u_{n}=F_{n}, v_{n}=L_{n}, a^{m}=a+1=a^{2}$, so $m=2$.

Concluding Remarks

If $P=-Q=1$, then $D=5, u_{n}=F_{n}$, and $v_{n}=L_{n}$ (the $n^{\text {th }}$ Lucas number). In this case, Theorems $1(a), 1(b), 2(a), 2(b)$, say, respectively:
(I) $\quad \sum_{k=0}^{n} F_{k} F_{n-k}=\frac{n L_{n}-F_{n}}{5}$

SOME CONVOLUTION-TYPE AND COMBINATORIAL IDENTITIES PERTAINING TO BINARY LINEAR RECURRENCES

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k} F_{k} F_{n-k}^{\prime}=\frac{2^{n} L_{n}-2}{5} \tag{II}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=0}^{n} L_{k} L_{n-k}=(n+1) L_{n}+2 F_{n+1} \tag{III}
\end{equation*}
$$

(IV) $\sum_{k=0}^{n}\binom{n}{k} L_{k} L_{n-k}=2^{n} L_{n}+2$
(I) was obtained by Hoggatt \& Bicknell-Johnson [8]; an alternate form of (I) was given by Knuth [10]; (I) and (II) appeared without proof in Wall [11];
(II) and (IV) were given by Buschman [3].

Theorem 7 also yields the identities

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k} F_{k}=F_{2 n} ; \quad \sum_{k=0}^{n}\binom{n}{k} L_{k}=L_{2 n} . \tag{V}
\end{equation*}
$$

(V) appeared in papers by Gould [6] and by Carlitz \& Ferns [5].

References

1. G. E. Bergum \& V. E. Hoggatt, Jr. "Limits of Quotients for the Convolved Fibonacci Sequence and Related Sequences." Fibonacci Quarterly 15.2 (1977): 113-16.
2. M. Bicknell. "A Primer for the Fibonacci Numbers: Part XIII." Fibonacci Quarterly 11.6 (1973):511-16.
3. R. G. Buschman. Solution to Problem H-18. Fibonacci Quarterly 2.2 (1964): 127.
4. L. Carlitz. Solution to Problem H-39. Fibonacci Quarterly 3.1 (1965):5153.
5. L. Carlitz \& H. H. Ferns. "Some Fibonacci and Lucas Identities." Fibonacci Quarterly 8.1 (1970):61-73.
6. H. W. Gould. "Generating Functions for Powers of Products of Fibonacci Numbers." Fibonacci Quarterly 1.2 (1963):1-16.
7. V. E. Hoggatt, Jr. "Convolution Triangles for Generalized Fibonacci Numbers." Fibonacci Quarterly 8.2 (1970):158-71.
8. V. E. Hoggatt, Jr., \& M. Bicknell-Johnson. "Fibonacci Convolution Sequences." Fibonacci Quarterly 15.2 (1977):117-22.
9. A. F. Horadam \& J. M. Mahon. "Convolutions for Pell Polynomials." In Fibonacci Numbers and Their Applications. Edited by A. N. Phillipou, G. E. Bergum, \& A. F. Horadam. Dordrecht: D. Reide1, 1986, pp. 55-80.
10. D. Knuth. The Art of Computer Programming. Vol. I, 2nd ed. New York: Addison-Wesley, 1973.
11. C. R. Wall. "Some Remarks on Carlitz' Fibonacci Array." Fibonacci Quarterly 1.4 (1963):23-29.
