ON DETERMINANTS WHOSE ELEMENTS ARE RECURRING SEQUENCES OF ARBITRARY ORDER

Richard André-Jeannin
Ecole Nationale d'Ingénieurs de Sfax, Tunisia
(Submitted October 1989)
Some years ago, Carlitz [1] and Zeitlin [2] calculated determinants of the form $\left|w_{a+k(i+j)}^{r}\right|(i, j=0,1, \ldots, r)$, where $\left\{w_{n}\right\}$ is a second-order recurring sequence. More generally, the aim of this paper is to obtain a closed form for the $s \times s$ determinant

$$
\Delta_{w}\left[\left.\begin{array}{lll}
i_{1}, & \ldots, & i_{r} \tag{1}\\
j_{1}, & \ldots, & j_{r}
\end{array} \right\rvert\,\right]=\left|\begin{array}{llll}
w_{a}, & w_{a+j_{1}}, & \ldots, & w_{a+j_{r}} \\
w_{a+i_{1}}, & w_{a+i_{1}+j_{1}}, & \ldots, & w_{a+i_{1}+j_{r}} \\
\vdots & & \vdots \\
\vdots & & \dot{w}_{a+i_{r}+j_{r}}
\end{array}\right|,
$$

where $s=r+1$ and $\alpha, i_{1}, \ldots, i_{r}, j_{1}, \ldots, j_{r}$ are integers, when $\left\{w_{n}\right\}$ satisfies the recurrence of order s,

$$
\begin{equation*}
w_{n}=\sum_{k=1}^{s}(-1)^{k-1} \sigma_{k} w_{n-k}, \quad n \in \mathbb{Z} \tag{2}
\end{equation*}
$$

where $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{s}$ are complex numbers, with $\sigma_{s} \neq 0$.
We shall often write $\Delta_{j_{1}, j_{2}, \ldots, j_{r}}^{i_{1}, i_{2}, \ldots, i_{r}}$ instead of $\Delta_{w}\left[\left.\begin{array}{lll}i_{1}, \ldots, & i_{r} \\ j_{1}, \ldots, & j_{r}\end{array} \right\rvert\, a\right]$.
We want to obtain an expression of Δ_{ω} in terms of the Fibonacci solution $\left\{u_{n}^{(s)}\right\}$ of (2), whose initial conditions are:

$$
\begin{equation*}
u_{0}^{(s)}=u_{1}^{(s)}=\cdots=u_{r-1}^{(s)}=0 ; \quad u_{r}^{(s)}=1 \tag{3}
\end{equation*}
$$

We define the characteristic number e_{w} of the sequence $\left\{\omega_{n}\right\}$ by

$$
e_{\omega}=\Delta_{w}\left[\left.\begin{array}{llll}
1,2, \ldots, r \\
1, & 2, \ldots, r
\end{array} \right\rvert\, 0\right]=\left|w_{i+j}\right| \quad(i, j=0,1, \ldots, r) .
$$

Note that, for the Fibonacci sequence $\left\{u_{n}^{(s)}\right\}$, we have, by (3) and (4),

$$
e_{u(s)}=(-1)^{\frac{r(r+1)}{2}}=(-1)^{\frac{r s}{2}}
$$

1. A Particular Case

In this section we assume that the characteristic polynomial of (2) admits distinct roots $\alpha_{1}, \ldots, \alpha_{s}$, and that α_{i} / α_{j} is not a root of unity, for distinct i and j. In that case, there exist complex numbers C_{1}, \ldots, C_{s}, such that

$$
w_{n}=\sum_{i=1}^{s} C_{i} \alpha_{i}^{n}, \quad n \in \mathbb{Z}
$$

Notice also that

$$
\sigma_{s}=\prod_{i=1}^{s} \alpha_{i}
$$

The statement of the main result of this section is
Theorem I: $\Delta_{w}\left[\left.\begin{array}{llll}k & 2 k, \ldots, r k \\ k, & 2 k, \ldots, r k\end{array} \right\rvert\, a\right]=C_{1} \ldots C_{s} \sigma_{s}^{a} V\left(\alpha_{1}^{k}, \ldots, \alpha_{s}^{k}\right)^{2}$

$$
=e_{w} \sigma_{s}^{\alpha} \frac{V\left(\alpha_{1}^{k}, \ldots, \alpha_{s}^{k}\right)^{2}}{V\left(\alpha_{1}, \ldots, \alpha_{s}\right)^{2}}
$$

where $V\left(\alpha_{1}, \ldots, \alpha_{s}\right)=\prod_{i>j}\left(\alpha_{i}-\alpha_{j}\right)$ is the Vandermonde determinant.
The proof will require the following result.
Lemma I: $e_{\omega}=C_{1} \ldots C_{s} V\left(\alpha_{1}, \ldots, \alpha_{s}\right)^{2}$.
Proof: From the equality between matrices

$$
\left[w_{i+j}\right]=\left[C_{j+1} \alpha_{j+1}^{i}\right]\left[\alpha_{i+1}^{j}\right] \quad(i, j=0,1, \ldots, r),
$$

and passing to determinants, we obtain

$$
\begin{aligned}
e_{\omega} & =\left|C_{j+1} \alpha_{j+1}^{i}\right|\left|\alpha_{i+1}^{j}\right| \quad(i, j=0,1, \ldots, r) \\
& =C_{1} \ldots C_{s}\left|\alpha_{j+1}^{i}\right|^{2} \\
& =C_{1} \ldots C_{s} V\left(\alpha_{1}, \ldots, \alpha_{s}\right)^{2} . \quad \text { Q.E.D. }
\end{aligned}
$$

Proof of Theorem I: Let us consider the sequence $\left\{\omega_{n}^{\prime}\right\}$, with $\omega_{n}^{\prime}=\omega_{a+k n}$. Then we have
(5) $\quad \omega_{n}^{\prime}=\sum_{i=1}^{s} C_{i} \alpha_{i}^{a}\left(\alpha_{i}^{k}\right)^{n}$,
and, since the α_{i}^{k} are distinct, $\left\{\omega_{n}^{\prime}\right\}$ satisfies a recurrence

$$
w_{n}^{\prime}=\sum_{m=1}^{s}(-1)^{m-1} \sigma_{m}^{\prime} \omega_{n-m}^{\prime}
$$

with

$$
\sigma_{m}^{\prime}=\sum_{1 \leq i_{1}<\cdots<i_{m} \leq s} \alpha_{i_{1}}^{k} \ldots \alpha_{i_{m}}^{k} .
$$

Clearly we have, with the above notations,

$$
\Delta_{w}\left[\left.\begin{array}{llll}
k, & 2 k, & \ldots, & r k \\
k, & 2 k, & \ldots, & r k
\end{array} \right\rvert\, a\right]=\Delta_{w^{\prime}}\left[\left.\begin{array}{llll}
1, & 2, & \ldots, & r \\
1, & 2, & \ldots . & r
\end{array} \right\rvert\, 0\right]=e_{w^{\prime}} .
$$

However, by Lemma I and (5), we have

$$
\begin{aligned}
e_{w^{\prime}} & =\left[\prod_{i=1}^{s} C_{i} \alpha_{i}^{a}\right] V\left(\alpha_{1}^{k}, \ldots, \alpha_{s}^{k}\right)^{2} \\
& =C_{1} \ldots C_{s} \sigma_{s}^{a} V\left(\alpha_{1}^{k}, \ldots, \alpha_{s}^{k}\right)^{2}=e_{w} \sigma_{s}^{a} \frac{V\left(\alpha_{1}^{k}, \ldots, \alpha_{s}^{k}\right)^{2}}{V\left(\alpha_{1}, \ldots, \alpha_{s}\right)^{2}}
\end{aligned}
$$

Applications:

(i) Put $\alpha=n-r k$ in the formula of Theorem I to get

$$
\begin{align*}
\Delta_{w}\left[\left.\begin{array}{llll}
k, & 2 k, \ldots, r k \\
k, & 2 k, \ldots, r k
\end{array} \right\rvert\, n-r k\right] & =C_{1} \ldots C_{s} \sigma_{s}^{n-r k} V\left(\alpha_{1}^{k}, \ldots, \alpha_{s}^{k}\right)^{2} \tag{6}\\
& =e_{w} \sigma_{s}^{n-r k} \frac{V\left(\alpha_{1}^{k}, \ldots, \alpha_{s}^{k}\right)^{2}}{V\left(\alpha_{1}, \ldots, \alpha_{s}\right)^{2}}
\end{align*}
$$

$$
\begin{aligned}
& \text { In the case } s=2 \text {, we obtain } \\
& \qquad \begin{aligned}
w_{n-k} \omega_{n+k}-w_{n}^{2} & =C_{1} C_{2} \sigma_{2}^{n-k}\left(\alpha_{1}^{k}-\alpha_{2}^{k}\right)^{2}=e_{w} \sigma_{2}^{n-k} \frac{\left(\alpha_{2}^{k}-\alpha_{1}^{k}\right)^{2}}{\left(\alpha_{2}-\alpha_{1}\right)^{2}} \\
& =e_{w} \sigma_{2}^{n-k}\left(u_{k}^{(2)}\right)^{2},
\end{aligned}
\end{aligned}
$$

which is the well-known Catalan relation; thus, (6) is a generalization of this result.
(ii) We can also study the sequence $\left\{w_{n}^{r}\right\}$, where $\left\{w_{n}\right\}$ satisfies the secondorder recurrence

$$
w_{n}=p w_{n-1}-q w_{n-2},
$$

whence

$$
w_{n}=C_{1} \alpha_{1}^{n}+C_{2} \alpha_{2}^{n} .
$$

Assuming that α_{1} / α_{2} is not a root of unity, we get

$$
\begin{equation*}
w_{n}^{r}=\sum_{i=0}^{r}\binom{r}{i} C_{1}^{i} C_{2}^{r-i}\left(\alpha_{1}^{i} \alpha_{2}^{r-i}\right)^{n}, \tag{7}
\end{equation*}
$$

where the $\alpha_{1}^{i} \alpha_{2}^{r-i}$ are distinct. Hence, $\left\{w_{n}^{r}\right\}$ satisfies a recurrence of type (2), with

$$
\begin{equation*}
\sigma_{s}=\prod_{i=0}^{r} \alpha_{1}^{i} \alpha_{2}^{r-i}=\left(\alpha_{1} \alpha_{2}\right)^{\frac{r s}{2}}=q^{\frac{r s}{2}} \tag{8}
\end{equation*}
$$

By application of Theorem I, we obtain a new proof of a known result (see [1], [2]).
Corollary I: $\left|w_{a+k(i+j)}^{r}\right| \quad(i, j=0, \ldots, r)$

$$
=e_{w}^{\frac{r_{s}}{2}} q^{\frac{a r_{s}}{2}+\frac{k r\left(r^{2}-1\right)}{3}} \sum_{i=0}^{r}\binom{r}{i} \sum_{i=1}^{r}\left(u_{k i}^{(2)}\right)^{2} .
$$

Proof: By Theorem I, (7), and (8), we get

$$
\begin{align*}
\left|w_{a+k(i+j)}^{r}\right| & =\Delta_{w^{r}}\left[\left.\begin{array}{llll}
k, & 2 k, \ldots, r k \\
k, & 2 k, \ldots, & r k
\end{array} \right\rvert\, \alpha\right] \tag{9}\\
& =\prod_{i=0}^{r}\binom{r}{i} C_{1}^{i} C_{2}^{r-i} \cdot q^{\frac{a r s}{2}} \cdot V\left(\alpha_{2}^{r}, \alpha_{1} \alpha_{2}^{r-1}, \ldots, \alpha_{1}^{r}\right)^{2} \\
& =\prod_{i=0}^{r}\binom{r}{i} \cdot\left(C_{1} C_{2}\right)^{\frac{r s}{2}} \cdot V\left(\alpha_{2}^{r}, \alpha_{1} \alpha_{2}^{r-1}, \ldots, \alpha_{1}^{r}\right)^{2},
\end{align*}
$$

and it can be shown (see [1], p. 130) that the value of the Vandermonde determinant is

$$
\begin{equation*}
\left(\alpha_{1}-\alpha_{2}\right)^{\frac{r s}{2}} q^{\frac{k r\left(r^{2}-1\right)}{6}} \prod_{i=1}^{r}\left(u_{k i}^{(2)}\right)^{r-i+1} \tag{10}
\end{equation*}
$$

The result follows now from (9) and (10) since, by Lemma I,

$$
e_{\omega}=C_{1} C_{2}\left(\alpha_{1}-\alpha_{2}\right)^{2}
$$

2. The General Results

In what follows, we do not make any assumption about the roots of the characteristic equation, and we put again $s=r+1$. In this section we shall prove the following theorem.
Theorem II: Let $\left\{\omega_{n}\right\}$ be any solution of the recurrence (2). For all integers $a, i_{1}, i_{2}, \ldots, i_{r}, j_{1}, j_{2}, \ldots, j_{r}$, we have

$$
\Delta_{w}\left[\left.\begin{array}{lll}
i_{1}, & \ldots, & i_{r} \tag{11}\\
j_{1}, & \ldots, & j_{r}
\end{array} \right\rvert\, a=\sigma_{s}^{a} e_{w} \delta_{i_{1}}, \ldots, i_{r} \delta_{j_{1}}, \ldots, j_{r}\right.
$$

where $\delta_{i_{1}}, \ldots, i_{r}$ is the $r \times r$ determinant

$$
\delta_{i_{1}}, \ldots, i_{r}=\left|u_{i_{p}+q-1}^{(s)}\right|, \quad(p, q=1,2, \ldots, r)
$$

From Theorem II, we get a corollary which can be compared with (6).
Corollary II (Catalan's relation): For all integers n and k, we have

$$
\Delta_{w}\left[\left.\begin{array}{llll}
k, & 2 k, & \ldots, & r k \tag{12}\\
k, & 2 k, & \ldots, & r k
\end{array} \right\rvert\, n-r k\right]=\sigma_{s}^{n-r k} e_{w} \delta_{k}^{2}, 2 k, \ldots, r k
$$

Proof: Put $a=n-r k, j_{m}=i_{m}=m k, 1 \leq m \leq r$, in the general formula (11).
For example, in the case $s=2$, (12) becomes

$$
w_{n-k} w_{n+k}-w_{n}^{2}=\sigma_{2}^{n-k}\left(u_{k}^{(2)}\right)^{2}
$$

and, in the case $s=3$,

$$
\left|\begin{array}{lll}
w_{n-2 k} & w_{n-k} & w_{n+k} \\
w_{n-k} & w_{n} & w_{n+k} \\
w_{n} & w_{n+k} & w_{n+2 k}
\end{array}\right|=\sigma_{3}^{n-2 k} e_{\omega}\left|\begin{array}{ll}
u_{k}^{(3)} & u_{2 k}^{(3)} \\
u_{k+1}^{(3)} & u_{2 k+1}^{(3)}
\end{array}\right|^{2}
$$

3. Proof of Theorem II

We shall need the following results.
Lemma II:
(i) For all integers $i_{1}, \ldots, i_{r}, j_{1}, \ldots, j_{r}$,

$$
\Delta_{j_{1}, \ldots, j_{r}}^{i_{1}, \ldots, i_{r}}=\Delta_{i_{1}}^{j_{1}}, \ldots, j_{r}
$$

(ii) For all integers $i_{1}, \ldots, i_{r}, j_{1}, \ldots, j_{r}$, and all $1 \leq p \leq r$, we have

$$
\Delta_{j_{1}, \ldots, j_{p}}^{i_{1}, \ldots, j_{r}}=\sum_{k=1}^{s}(-1)^{k-1} \sigma_{k} \Delta_{j_{1}, \ldots, j_{p}-k}^{i_{1}, \ldots, i_{r}}
$$

and

$$
\delta_{i_{1}}, \ldots, i_{p}, \ldots, i_{r}=\sum_{k=1}^{s}(-1)^{k-1} \sigma_{k} \delta_{i_{1}}, \ldots, i_{p}-k, \ldots, i_{r}
$$

(iii) If τ is a permutation of $\{1,2, \ldots, r\}$ of $\operatorname{sign} \varepsilon(\tau)$, then for all integers $i_{1}, \ldots, i_{r}, j_{1}, \ldots, j_{r}$,

$$
\Delta_{j_{\tau(1)}, \ldots, j_{\tau(r)}}^{i_{1}, \ldots, i_{r}}=\varepsilon(\tau) \Delta_{j_{1}, \ldots, j_{r}}^{i_{1}, \ldots, i_{r}}
$$

and

$$
\delta_{j_{\tau(1)}}, \ldots, j_{\tau(r)}=\varepsilon(\tau) \delta_{j_{1}}, \ldots, j_{r}
$$

(iv) If $j_{k}=j_{l}$ for distinct k and ℓ or if there exists k such that $j_{k}=0$, then

$$
\Delta_{j_{1}, \ldots, j_{r}}^{i_{1}, \ldots, i_{r}}=\delta_{j_{1}, \ldots, j_{r}}=0
$$

Proof: This is an immediate consequence of the properties of determinants.
Lemma III: Let us consider two sequences $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$, with $n=\left(n_{1}, \ldots, n_{t}\right)$ $\in \mathbb{Z}^{t}$, such that, for all $n \in \mathbb{Z}^{t}$, and all $1 \leq p \leq t$,
and

$$
\begin{equation*}
X_{n_{1}}, \ldots, n_{p}, \ldots, n_{t}=\sum_{k=1}^{s}(-1)^{k-1} \sigma_{k} X_{n_{1}}, \ldots, n_{p}-k, \ldots, n_{t} \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
Y_{n_{1}}, \ldots, n_{p}, \ldots, n_{t}=\sum_{k=1}^{s}(-1)^{k-1} \sigma_{k} Y_{n_{1}}, \ldots, n_{p}-k, \ldots, n_{t} \tag{14}
\end{equation*}
$$

If $X_{n}=Y_{n}$ holds for all n belonging to
(15) $\quad C_{t}=\left\{n \in \mathbb{Z}^{t}, 0 \leq n_{p} \leq r, 1 \leq p \leq t\right\}$,
then

$$
\begin{equation*}
X_{n}=Y_{n} \text { holds for all } n \in \mathbb{Z}^{t} \tag{16}
\end{equation*}
$$

Proof: By induction on t. The statement is well known for $t=1$. Let us suppose that (16) holds up to a certain $t \geq 1$. For the inductive step $t \rightarrow t+1$, fix an integer m and consider the sequences $\left\{x_{n}^{(m)}\right\}$ and $\left\{y_{n}^{(m)}\right\}$, with $n=\left(n_{1}\right.$, ..., n_{t}) defined by

$$
x_{n}^{(m)}=X_{n_{1}}, \ldots, n_{t}, m \quad \text { and } \quad y_{n}^{(m)}=Y_{n_{1}}, \ldots, n_{t}, m
$$

By definition, $x_{n}^{(m)}=y_{n}^{(m)}$ holds for all $n \in C_{t}$ and all $0 \leq m \leq r$, and by the induction hypothesis,

$$
x_{n}^{(m)}=y_{n}^{(m)} \text { for } n \in \mathbb{Z}^{t} \text { and } 0 \leq m \leq r
$$

Now, fix $n \in \mathbb{Z}^{t}$ and consider the sequences x_{m}^{\prime} and y_{m}^{\prime}, defined by

$$
x_{m}^{\prime}=X_{n_{1}}, \ldots, n_{t}, m \quad \text { and } \quad y_{m}^{\prime}=Y_{n_{1}}, \ldots, n_{t}, m
$$

We have $x_{m}^{\prime}=y_{m}^{\prime}$ for $0 \leq m \leq r$, and the same equality holds for all integers m, since by (13) $\left\{x_{m}^{\prime}\right\}$ and $\left\{y_{m}^{\prime}\right\}$ satisfy a recurrence relation of order s. This concludes the proof of Lemma 3.

Proof of Theorem 2:
Step 1: We prove that, for all integers $i_{1}, \ldots, i_{r}, j_{1}, \ldots, j_{r}$,
$\Delta_{j_{1}}^{i_{1}}, \ldots, i_{r}=j_{r}^{i_{1}}, \ldots, i_{r}(-1)^{\frac{r(r-1)}{2}} \delta_{j_{1}}, \ldots, j_{r}$.
Let us fix i_{1}, \ldots, i_{r}. By Lemma 2 (ii) and Lemma 3, it suffices to show that (17) holds for j_{l}, \ldots, j_{r} belonging to the set

$$
C_{r}=\left\{\left(j_{1}, \ldots, j_{r}\right) \in \mathbb{Z}^{r}, 0 \leq j \leq r, 1 \leq p \leq r\right\}
$$

If one of the conditions of Lemma 2 (iv) is satisfied, then (17) clearly holds. Therefore, we have only to consider the case where $\left(j_{1}, \ldots, j_{p}\right)$ is a permutation of (1, 2, ..., r). By a direct calculation,

$$
\delta_{1}, \ldots, r=(-1)^{\frac{r(r-1)}{2}}
$$

whence (17) holds for $\left(j_{1}, \ldots, j_{r}\right)=(1,2, \ldots, r)$, and by Lemma $2(i i i)$, the equality holds for every permutation of ($1,2, \ldots, r$).

Step 2: By Lemma 2 (i) and Step 1, the following statement holds:

$$
\Delta_{1,2, \ldots, r}^{i_{1}}, \ldots, i_{r}=\Delta_{i_{1}, \ldots, i_{r}}^{1,2, \ldots, r}=\Delta_{1,2, \ldots, r}^{1,2, \ldots, r}(-1)^{\frac{r(r-1)}{2}} \delta_{i_{1}}, \ldots, i_{r}
$$

Hence, (17) becomes
(18) $\quad \Delta_{j_{1}}^{i_{1}, \ldots, i_{r}}=\Delta_{1,2}^{1,2, \ldots, r} \delta_{i_{1}}, \ldots, i_{r} \quad \delta_{j_{1}}, \ldots, j_{r}$.

Now, it is known (see [3], p. 99) that

$$
\Delta_{1,2, \ldots, r}^{1,2, \ldots, r}=\delta_{s}^{a} e_{w}
$$

By this and (18), the proof is complete.

$$
\begin{aligned}
& \text { For a second-order recurring sequence, (11) becomes } \\
& w_{a} w_{a+i+j}-w_{a+i} w_{a+j}=\sigma_{2}^{a} e_{\omega} u_{i}^{(2)} u_{j}^{(2)}
\end{aligned}
$$

When giving particular values to α, i, and j, one can deduce from this some well-known identities.

References

1. L. Carlitz. "Some Determinants Containing Powers of Fibonacci Numbers." Fibonacci Quarterly 4.2 (1966):129-34.
2. D. Zeitlin. "On Determinants Whose Elements Are Products of Recursive Sequences." Fibonacci Quarterly 8.4 (1970):350-59.
3. D. Jarden. Recurring Sequences. Jerusalem: Riveon Lematematika, 1973.

Announcement

FIFTH INTERNATIONAL CONFERENCE ON FIBONACCI NUMBERS AND THEIR APPLICATIONS

Mionday through Friday, Jully 20-24, 1992
Department of Mathematical and Computational Sciences
University of St. Andrews
St. Andrews KY16 9SS
Fiife, Scotland

LOCAL COMMITTEE
Colin M. Campbell, Co-chairman George M. Phillips, Co-chairman Dorothy M.E. Foster
John H. McCabe
John J. O'Connor
Edmund F. Robertson

INTERNATIONAL COMMITTEE

A.F. Horadam (Australia), Co-chair	M. Johnson (U.S.A.)
A.N. Philippou (Cyprus), Co-chair	P. Kiss (Hungary)
S. Ando (Japan)	C.T. Long (U.S.A.)
G.E. Bergum (U.S.A.)	B.S. Popov (Yugoslavia)
P. Filipponi (Italy)	J. Turner (New Zealand)
H. Harborth (Germany)	M.E. Waddill (U.S.A.)

LOCAL INFORMATION

For information on local housing, food, local tours, etc. please contact:
Dr. G.M. Phillips
Mathematical Institute
University of St. Andrews
North Haugh
ST. ANDREWS, Fife KY16 9SS
Scotland

CALL FOR PAPERS

The FIFTH INTERNATIONAL CONFERENCE ON FIBONACCI NUMBERS AND THEIR APPLICATIONS will take place at The University of St. Andrews, St. Andrews, Scotland from July 20 to July 24, 1992. This Conference is sponsored jointly by the Fibonacci Association and The University of St. Andrews.

Papers on all branches of mathematics and science related to the Fibonacci numbers as well as recurrences and their generalizations are welcome. Abstracts are to be submitted by March 15, 1992. Manuscripts are due by May 30, 1992. Abstracts and manuscripts should be sent in duplicate following the guidelines for submission of articles found on the inside front cover of any recent issue of The Fibonacci Quarterly to:

Professor Gerald E. Bergum
The Fibonacci Quarterly
Department of Computer Science, South Dakota State University
P.O. Box 2201, Brookings, South Dakota 57007-0194

