# DIVISIBILITY OF GENERALIZED FIBONACCI AND LUCAS NUMBERS BY THEIR SUBSCRIPTS 

Richard André-Jeannin
Ecole Nationale d'Ingénieurs de Sfax, Tunisia
(Submitted February 1990)

## 1. Introduction

In this paper, we shall extend some previous results ([2], [3], [4]) concerning divisibility of terms of certain recurring sequences based on their subscripts. We shall use the generalized Fibonacci and Lucas numbers, defined for $n \geq 0$ by

$$
U_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \quad \text { and } \quad V_{n}=\alpha^{n}+\beta^{n}
$$

where $\alpha$ and $\beta$ are two complex numbers such that $P=\alpha+\beta$ and $Q=\alpha \beta$ are relatively prime nonzero integers. We shall exclude from consideration the case in which and are roots of unity. Then $U_{n}$ and $V_{n}$ are always different from zero [1]. We shall also give some applications to the equation

$$
a^{n} \pm b^{n} \equiv 0(\bmod n),
$$

where $a>b \geq 1$ are relatively prime integers.
In what follows, $\omega(q)$ [resp. $\bar{\omega}(q)$ ] denotes the rank of apparition of the positive integer $q$ in the sequence $\left\{U_{m}\right\}$ (resp. $\left\{V_{m}\right\}$ ), i.e., the least positive index $\omega$ (resp. $\bar{\omega}$ ) for which $q \mid U_{\omega}$ (resp. $q \mid V_{\bar{\omega}}$ ). Recall that the integer $b$ is an odd multiple of the integer $\alpha$ if $\alpha \mid b$ and $2 \nmid(b / a)$. The main result, which generalizes the one of Jarden [3], can be stated as follows.
Theorem 1: Let $n=p_{1}^{\lambda_{1}} p_{2}^{\lambda_{2}} \ldots p_{k}^{\lambda_{k}} \geq 2$ be a natural integer.
(i) If $n \geq 2$ divides some member of the sequence $\left\{U_{m}\right\}$, then $U_{n} \equiv 0$ (mod $n$ ) if and only if the rank of apparition of any prime divisor of $n$ also divides $n$.
(ii) If $n \geq 3$ divides some member of the sequence $\left\{V_{m}\right\}$, then $V_{n} \equiv 0$ (mod $n$ ) if and only if $n$ is an odd multiple of $\operatorname{lcm}\left(\bar{\omega}\left(p_{1}\right), \ldots, \bar{\omega}\left(p_{k}\right)\right)$.

## 2. Preliminary Results

The following well-known properties will be necessary for our future proofs. Proofs of these results can be found in the papers of Lucas [5] or Carmichael [1].
(i) For each integer $n \geq 1, \operatorname{gcd}\left(U_{n}, Q\right)=\operatorname{gcd}\left(V_{n}, Q\right)=1$.
(ii) If $p$ is a prime number such that $p \nmid Q$, then $\omega(p)=p$ if and only if $p \mid(\alpha-\beta)^{2}$, and $\operatorname{gcd}(\omega(p), p)=1$ otherwise.
(iii) If $q$ is a prime divisor of $\omega(p)$, with $p \neq 2$ and $p \nmid(\alpha-\beta)^{2}$, then $q<p$. Moreover, we have
(a) $\omega\left(p^{\lambda}\right)=\omega(p) p^{\mu}, 0 \leq \mu<\lambda$,
(b) $\omega\left(p_{1}^{\lambda_{1}} \ldots p_{k}^{\lambda_{k}}\right)=1 \mathrm{~cm}\left(\omega\left(p_{1}^{\lambda_{1}}\right), \ldots, \omega\left(p_{k}^{\lambda_{k}}\right)\right)$, and
(c) $n \mid U_{m}$ if and only if $\omega(n) \mid m$.
(iv) If the prime number $p$ divides some member of the sequence $\left\{V_{m}\right\}$, then
(a) $\bar{\omega}(p)<p$,
(b) $\operatorname{gcd}(\bar{\omega}(p), p)=1$,
(c) $\bar{\omega}\left(p^{\lambda}\right)=\bar{\omega}(p) p^{\mu}, 0 \leq \mu<\lambda, p$ odd,
(d) If $2^{\lambda} \mid V_{m}$, then $\bar{\omega}(2)=\bar{\omega}\left(2^{\lambda}\right)$, and
(e) If $n=p_{1}^{\lambda_{1}} \ldots p_{k}^{\lambda_{k}}$ divides some member of the sequence $\left\{V_{m}\right\}$, then $\bar{\omega}(n)=1 \mathrm{~cm}\left(\bar{\omega}\left(p_{1}^{\lambda_{1}}\right), \ldots, \bar{\omega}\left(p_{k}^{\lambda_{k}}\right)\right)$, and, for $n \geq 3, n \mid V_{m}$ if and only if $m$ is an odd multiple of $\bar{\omega}(n)$.

## 3. Proof of Theorem 1

(i) Let $n=p_{1}^{\lambda_{1}} \ldots p_{k}^{\lambda_{k}} \geq 2$ be an integer which divides some member of the sequence $\left\{U_{m}\right\}$. First, assume that $n \mid U_{n}$. Then, for each $1 \leq i \leq k, p_{i} \mid U_{n}$, and $\omega\left(p_{i}\right) \mid n$. Second, assume that, for each $i, \omega\left(p_{i}\right) \mid n$.

If $p_{i} \mid(\alpha-\beta)^{2}$, then

$$
\omega\left(p_{i}^{\lambda_{i}}\right)=\omega\left(p_{i}\right) p_{i}^{\mu_{i}}=p_{i}^{\mu_{i}+1} \mid n,
$$

since $\mu_{i}<\lambda_{i}$; otherwise,

$$
\omega\left(p_{i}^{\lambda_{i}}\right)=\omega\left(p_{i}\right) p_{i}^{\mu_{i}} \mid n,
$$

since $\operatorname{gcd}\left(\omega\left(p_{i}\right), p_{i}\right)=1$, and $\mu_{i}<\lambda_{i}$. Thus,

$$
\omega(n)=1 \mathrm{~cm}\left(\omega\left(p_{1}^{\lambda_{1}}\right), \ldots, \omega\left(p_{k}^{\lambda_{k}}\right)\right) \mid n, \text { and } n \mid U_{n} .
$$

(ii) Now, let $n=p_{1}^{\lambda_{1}} \ldots p_{k}^{\lambda_{k}} \geq 3$ be an integer which divides some member of the sequence $\left\{V_{m}\right\}$. First, assume that $n$ is an odd multiple of $1 \mathrm{~cm}\left(\bar{\omega}\left(p_{1}\right)\right.$, $\left.\ldots, \bar{\omega}\left(p_{k}\right)\right)$. If $p=2$, then $\bar{\omega}\left(p_{i}^{\lambda}\right)=\bar{\omega}\left(p_{i}\right) \mid n$, whereas if $p_{i} \neq 2$, then $\bar{\omega}\left(p_{i} \lambda_{i}\right)$ $=\bar{\omega}\left(p_{i}\right) p_{i}^{\mu} \mid n$, since $\operatorname{gcd}\left(\bar{\omega}\left(p_{i}\right), p_{i}\right)^{2}=1$, and $\mu_{i}<\lambda_{i}$. Therefore, $n$ is an odd multiple of $\bar{\omega}(n)=1 \mathrm{~cm}\left(\bar{\omega}\left(p_{1}^{\lambda_{1}}\right), \ldots, \bar{\omega}\left(p_{k}^{\lambda} k\right)\right.$, since $n$ is an odd multiple of $\operatorname{lcm}\left(\bar{\omega}\left(p_{1}\right), \ldots, \bar{\omega}\left(p_{k}\right)\right)$. Second, assume that $n \mid V_{n}$, with $n \geq 3$. We know that $n$ is an odd multiple of $1 \mathrm{~cm}\left(\bar{\omega}\left(p_{1}^{\lambda_{1}}\right), \ldots, \bar{\omega}\left(p_{k}^{\lambda_{k}}\right)\right)=\bar{\omega}(n)$. Therefore, $n$ is an odd multiple of $\operatorname{lcm}\left(\bar{\omega}\left(p_{1}\right), \ldots, \bar{\omega}\left(p_{k}\right)\right)$, since $\frac{k}{\omega}\left(p_{i}^{\lambda_{i}}\right)=\bar{\omega}\left(p_{i}\right) p_{i}^{\mu_{i}}, p_{i}$ odd, or $\bar{\omega}\left(p_{i}^{\lambda_{i}}\right)$ $=\bar{\omega}\left(p_{i}\right)$, if $p_{i}=2$. This concludes the proof of Theorem 1 .

Theorem 1 immediately yields the following Corollary, due to Jarden [3].
Corollary 1: (i) If $U_{n} \equiv 0(\bmod n)$, and $m$ is composed of only prime factors of $n$, then also $U_{m n} \equiv 0(\bmod m n)$ 。
(ii) If $V_{n} \equiv 0(\bmod n)$, and $m$ is composed of only odd prime factors of $n$, then also $V_{m n} \equiv 0(\bmod m n)$.
Remark 1: By application of Theorem 1 and Corollary 1, numerical examples can be obtained. For instance, let $n=p_{1}^{\lambda_{1}} \ldots p_{k}^{\lambda_{k}}$ be an odd number, such that $3 \leq p_{1}<\cdots<p_{k}$, and $n \mid U_{n}$. We have $\omega\left(p_{1}\right) \neq 1$, since $U_{1}=1$, and by $\S 2($ iii $)$, $\omega\left(p_{1}\right)=p_{1}$, and $p_{1} \mid(\alpha-\beta)^{2}$, since $\omega\left(p_{1}\right)$ is a factor of $n$. This case can occur only if $(\alpha-\beta)^{2}$ admits an odd prime divisor. Moreover, we have

$$
\omega\left(p_{i}\right)=p_{i},
$$

or

$$
\omega\left(p_{i}\right)=p_{1}^{\mu_{1}} \ldots p_{i-1}^{\mu_{i}-1}, \quad i=2, \ldots, k ; \quad \mu_{j} \leq \lambda_{j}, j=1, \ldots, i-1
$$

Theorem 1 also yields the following Corollary.
Corollary 2: If $n \mid U_{n}$, then $U_{n} \mid U_{U_{n}}$.
Proof: If $n \mid U_{n}$, and if $p$ is a prime number such that $p \mid U_{n}$, then $\omega(p)|n| U_{n}$, and the result follows by Theorem 1.

## 4. The Congruence $a^{n} \pm b^{n} \equiv 0(\bmod n)$

In what follows, we assume that $a>b \geq 1$ are relatively prime integers and that $e(n)$ denotes the rank of apparition of $n$ in the sequence $\left\{a^{m}-b^{m}\right\}$. The next result generalizes the main theorem of [4].

Theorem 2: Let $n$ and $\alpha b$ be relatively prime. Then the following statements are equivalent:
(i) $U_{n} \equiv 0(\bmod n)$.
(ii) $a^{n}-b^{n} \equiv 0(\bmod n)$.
(iii) $n \equiv 0[\bmod e(n)]$.
(iv) $n \equiv 0[\bmod e(p)]$, for each prime factor $p$ of $n$.

Proof: It is clear that (i) $\Rightarrow$ (ii) $\Rightarrow$ (iii) $\Rightarrow$ (iv). Now, assume that $n \equiv 0$ [mod $e(p)$ ] for each prime factor of $n$. If $p \mid \alpha-b$, then $[\$ 2(i i)] \omega(p)=p \mid n$. On the other hand, if $p \nmid a-b$, then $p \mid U_{n}$ if and only if $p \mid a^{n}-b^{n}$. Thus, $\omega(p)=$ $e(p) \mid n$. The conclusion follows by Theorem 1 .
Corollary 3: The equation $a^{n}-b^{n} \equiv 0(\bmod n)$ has
(i) no solution if $a=b+1$ and $n \geq 2$,
(ii) infinitely many solutions otherwise.

Proof: If $\alpha-b$ admits at least one prime divisor $p$, then $p^{\lambda} \mid U_{p^{\lambda}}$, for each positive integer $\lambda$, by Corollary 1. On the other hand, if $\alpha-b=1$, then $Q=a b$ is even and $n$ must be odd. But this case cannot occur since, if $p$ was the least prime factor of $n$, we would have, by Remark 1 above,

$$
\omega(p) \mid(a-b)^{2} . \quad \text { Q.E.D. }
$$

Corollary 4: The equation $\alpha^{n}+b^{n} \equiv 0(\bmod n)$ admits infinitely many solutions.
Proof: If $V_{1}=a+b$ admits an odd prime divisor $p$, then $p^{\lambda} \mid V_{p^{\lambda}}$, for each $\lambda \geq 1$, by Theorem 1 and Corollary 1. On the other hand, suppose that

$$
V_{1}=a+b=2^{m}, \quad m \geq 2
$$

Thus $a$ and $b$ are odd and

$$
V_{2}=(a+b)^{2}-2 a b=2\left(2^{2 m-1}-Q\right)
$$

where $2^{2 m-1}-Q>1$ is odd, since $Q$ is also odd. Thus, $V_{2}$ admits an odd prime divisor $p$, and $2 p$ is an odd multiple of $\operatorname{lcm}(\bar{\omega}(2), \bar{\omega}(p))=2$. By Theorem 1 and Corollary 1, we have

$$
2 p^{\alpha} \mid V_{2 p^{\alpha}}, \quad \alpha \geq 1 . \quad \text { Q.E.D. }
$$

## References

1. R. D. Carmichae1. "On the Numerical Factors of the Arithmetical Forms $\alpha^{n} \pm$ $\beta^{n}$." Ann of Math. 2.15 (1913):30-70.
2. V. E. Hoggatt, Jr. \& G. E. Bergum. "Divisibility and Congruence Relations." Fibonacci Quarterly 12.2 (1974):189-95.
3. D. Jarden. Recurring Sequences. 3rd ed. Jerusalem: Riveon Lematematika, 1973.
4. R. E. Kennedy \& G. N. Cooper. "Niven Repunits and $10^{n} \equiv 1(\bmod n) . "$ Fibonacei Quarterly 27.2 (1989):139-43.
5. E. Lucas. "Théorie des fonctions numériques simplement périodiques." Amer. J. Math. 1 (1878):184-220, 289-321.
