DIVISIBILITY OF GENERALIZED FIBONACCI AND LUCAS NUMBERS BY THEIR SUBSCRIPTS

Richard André-Jeannin

Ecole Nationale d'Ingénieurs de Sfax, Tunisia (Submitted February 1990)

1. Introduction

In this paper, we shall extend some previous results ([2], [3], [4]) concerning divisibility of terms of certain recurring sequences based on their subscripts. We shall use the generalized Fibonacci and Lucas numbers, defined for $n \ge 0$ by

$$V_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$
 and $V_n = \alpha^n + \beta^n$,

where α and β are two complex numbers such that $P = \alpha + \beta$ and $Q = \alpha\beta$ are relatively prime nonzero integers. We shall exclude from consideration the case in which and are roots of unity. Then U_n and V_n are always different from zero [1]. We shall also give some applications to the equation

 $a^n \pm b^n \equiv 0 \pmod{n},$

where $a > b \ge 1$ are relatively prime *integers*.

In what follows, $\omega(q)$ [resp. $\overline{\omega}(q)$] denotes the rank of apparition of the positive integer q in the sequence $\{U_m\}$ (resp. $\{V_m\}$), i.e., the least positive index ω (resp. $\overline{\omega}$) for which $q \mid U_{\omega}$ (resp. $q \mid V_{\overline{\omega}}$). Recall that the integer b is an odd multiple of the integer a if $a \mid b$ and $2 \nmid (b/a)$. The main result, which generalizes the one of Jarden [3], can be stated as follows.

Theorem 1: Let $n = p_1^{\lambda_1} p_2^{\lambda_2} \dots p_k^{\lambda_k} \ge 2$ be a natural integer.

(i) If $n \ge 2$ divides some member of the sequence $\{U_m\}$, then $U_n \equiv 0 \pmod{n}$ if and only if the rank of apparition of any prime divisor of n also divides n.

(ii) If $n \ge 3$ divides some member of the sequence $\{V_m\}$, then $V_n \equiv 0 \pmod{n}$ if and only if n is an odd multiple of $lcm(\overline{\omega}(p_1), \ldots, \overline{\omega}(p_k))$.

2. Preliminary Results

The following well-known properties will be necessary for our future proofs. Proofs of these results can be found in the papers of Lucas [5] or Carmichael [1].

(i) For each integer $n \ge 1$, $gcd(U_n, Q) = gcd(V_n, Q) = 1$.

(ii) If p is a prime number such that p/Q, then $\omega(p) = p$ if and only if $p|(\alpha - \beta)^2$, and $gcd(\omega(p), p) = 1$ otherwise.

(iii) If q is a prime divisor of $\omega(p)$, with $p \neq 2$ and $p/(\alpha - \beta)^2$, then q < p. Moreover, we have

- (a) $\omega(p^{\lambda}) = \omega(p)p^{\mu}, \ 0 \leq \mu < \lambda,$
- (b) $\omega(p_1^{\lambda_1} \dots p_k^{\lambda_k}) = \operatorname{lcm}(\omega(p_1^{\lambda_1}), \dots, \omega(p_k^{\lambda_k}))$, and
- (c) $n | U_m$ if and only if $\omega(n) | m$.

(iv) If the prime number p divides some member of the sequence $\{V_m\}$, then

364

[Nov.

- (a) $\overline{\omega}(p) < p$,
- (b) $gcd(\overline{\omega}(p), p) = 1$,
- (c) $\overline{\omega}(p^{\lambda}) = \overline{\omega}(p)p^{\mu}$, $0 \leq \mu < \lambda$, p odd,
- (d) If $2^{\lambda} | V_m$, then $\overline{\omega}(2) = \overline{\omega}(2^{\lambda})$, and

(e) If $n = p_1^{\lambda_1} \dots p_k^{\lambda_k}$ divides some member of the sequence $\{V_m\}$, then $\overline{\omega}(n) = 1 \operatorname{cm}(\overline{\omega}(p_{\underline{1}}^{\lambda_1}), \ldots, \overline{\omega}(p_{\underline{k}}^{\lambda_k}))$, and, for $n \ge 3$, $n \mid V_m$ if and only if m is an odd multiple of $\dot{\overline{\omega}}(n)$.

3. Proof of Theorem 1

(i) Let $n = p_1^{\lambda_1} \dots p_k^{\lambda_k} \ge 2$ be an integer which divides some member of the sequence $\{U_m\}$. First, assume that $n | U_n$. Then, for each $1 \le i \le k$, $p_i | U_n$, and $\omega(p_i)|n$. Second, assume that, for each i, $\omega(p_i)|n$. If $p_i|(\alpha - \beta)^2$, then

$$\omega(p_i^{\lambda_i}) = \omega(p_i)p_i^{\mu_i} = p_i^{\mu_i+1}|n,$$

since $\mu_i < \lambda_i$; otherwise,

 $\omega(p_i^{\lambda_i}) = \omega(p_i)p_i^{\mu_i}|n,$

since $gcd(\omega(p_i), p_i) = 1$, and $\mu_i < \lambda_i$. Thus,

$$\omega(n) = 1 \operatorname{cm}(\omega(p_1^{\lambda_1}), \ldots, \omega(p_k^{\lambda_k})) | n, \text{ and } n | U_n.$$

(ii) Now, let $n = p_1^{\lambda_1} \dots p_k^{\lambda_k} \ge 3$ be an integer which divides some member of the sequence $\{V_m\}$. First, assume that n is an odd multiple of $lcm(\overline{\omega}(p_1))$, ..., $\overline{\omega}(p_k)$). If p = 2, then $\overline{\omega}(p_i^{\lambda_i}) = \overline{\omega}(p_i) | n$, whereas if $p_i \neq 2$, then $\overline{\omega}(p_i^{\lambda_i})$

Theorem 1 immediately yields the following Corollary, due to Jarden [3].

Corollary 1: (i) If $U_n \equiv 0 \pmod{n}$, and m is composed of only prime factors of n, then also $U_{mn} \equiv 0 \pmod{mn}$.

(ii) If $V_n \equiv 0 \pmod{n}$, and *m* is composed of only odd prime factors of n, then also $V_{mn} \equiv 0 \pmod{mn}$.

Remark 1: By application of Theorem 1 and Corollary 1, numerical examples can be obtained. For instance, let $n = p_1^{\lambda_1} \dots p_k^{\lambda_k}$ be an odd number, such that $3 \le p_1 < \dots < p_k$, and $n | U_n$. We have $\omega(p_1) \ne 1$, since $U_1 = 1$, and by §2(iii), $\omega(p_1) = p_1$, and $p_1 | (\alpha - \beta)^2$, since $\omega(p_1)$ is a factor of n. This case can occur only if $(\alpha - \beta)^2$ admits an odd prime divisor. Moreover, we have

or

 $\omega(p_i) = p_1^{\mu_1} \dots p_{i-1}^{\mu_{i-1}}, \quad i = 2, \dots, k; \quad \mu_j \leq \lambda_j, \quad j = 1, \dots, i - 1.$

Theorem 1 also yields the following Corollary.

Corollary 2: If $n | U_n$, then $U_n | U_{U_n}$.

 $\omega(p_i) = p_i,$

Proof: If $n \mid U_n$, and if p is a prime number such that $p \mid U_n$, then $\omega(p) \mid n \mid U_n$, and the result follows by Theorem 1.

1991]

4. The Congruence $a^n \pm b^n \equiv 0 \pmod{n}$

In what follows, we assume that $a > b \ge 1$ are relatively prime integers and that e(n) denotes the rank of apparition of n in the sequence $\{a^m - b^m\}$. The next result generalizes the main theorem of [4].

Theorem 2: Let n and ab be relatively prime. Then the following statements are equivalent:

- (i) $U_n \equiv 0 \pmod{n}$.
- (ii) $a^n b^n \equiv 0 \pmod{n}$.
- (iii) $n \equiv 0 \pmod{e(n)}$.
- (iv) $n \equiv 0 \pmod{e(p)}$, for each prime factor p of n.

Proof: It is clear that (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv). Now, assume that $n \equiv 0 \pmod{e(p)}$ for each prime factor of n. If p|a - b, then $\lfloor \$2(1) \rfloor \omega(p) = p|n$. On the other hand, if p|a - b, then $p|U_n$ if and only if $p|a^n - b^n$. Thus, $\omega(p) = e(p)|n$. The conclusion follows by Theorem 1.

Corollary 3: The equation $a^n - b^n \equiv 0 \pmod{n}$ has

- (i) no solution if a = b + 1 and $n \ge 2$,
- (ii) infinitely many solutions otherwise.

Proof: If a - b admits at least one prime divisor p, then $p^{\lambda} | U_{p\lambda}$, for each positive integer λ , by Corollary 1. On the other hand, if a - b = 1, then Q = ab is even and n must be odd. But this case cannot occur since, if p was the least prime factor of n, we would have, by Remark 1 above,

$$\omega(p) | (a - b)^2$$
. Q.E.D.

Corollary 4: The equation $a^n + b^n \equiv 0 \pmod{n}$ admits infinitely many solutions. Proof: If $V_1 = a + b$ admits an odd prime divisor p, then $p^{\lambda} | V_{p^{\lambda}}$, for each $\lambda \ge 1$, by Theorem 1 and Corollary 1. On the other hand, suppose that

 $V_1 = \alpha + b = 2^m, m \ge 2.$

Thus a and b are odd and

 $V_2 = (a + b)^2 - 2ab = 2(2^{2m-1} - Q),$

where $2^{2m-1} - Q > 1$ is odd, since Q is also odd. Thus, V_2 admits an odd prime divisor p, and 2p is an odd multiple of $lcm(\overline{\omega}(2), \overline{\omega}(p)) = 2$. By Theorem 1 and Corollary 1, we have

 $2p^{\alpha} | V_{2p^{\alpha}}, \alpha \geq 1.$ Q.E.D.

References

- 1. R. D. Carmichael. "On the Numerical Factors of the Arithmetical Forms $\alpha^n \pm \beta^n$." Ann of Math. 2.15 (1913):30-70.
- V. E. Hoggatt, Jr. & G. E. Bergum. "Divisibility and Congruence Relations." Fibonacci Quarterly 12.2 (1974):189-95.
- 3. D. Jarden. *Recurring Sequences*. 3rd ed. Jerusalem: Riveon Lematematika, 1973.
- 4. R. E. Kennedy & G. N. Cooper. "Niven Repunits and $10^n \equiv 1 \pmod{n}$." Fibonacci Quarterly 27.2 (1989):139-43.
- 5. E. Lucas. "Théorie des fonctions numériques simplement périodiques." Amer. J. Math. 1 (1878):184-220, 289-321.

[Nov.

366