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1. Introduction 

We shall study a sequence of numbers defined recursively. Let In denote 
the principal branch of the natural logarithm, i.e.s InOe^6 ) = In v + icj), r > 0, 
with (j) = 0 (mod 2TT) , -IT < (J) < TT. We put 0 D s: = S, I D S : = zz(: = e2ln2) and 

(1) ( n + l ) D 3 = (n D s ) ( n D 2 )
s n = 0, 1, 2, . .. 

(n D 1 = 1, n u (-1) = -1, 1 • i = e"77/2). 

We consider5 in fact, a more general operation defined by 

agCa, b): = Z)5 ai(as Z?) : = Z?& 
and 

(2) an + 1(a5 2?): = an(a5 £)a"(a'&)
3 n = 0S 1, 23 eoo 

(an(l, g ) = n n s s n a i - %^2f--|» e\\ . 

By mathematical induction, we obtain the 

Proposition: The following algebraic relations hold for all n, m € IN and as Z?, 
c, z e (E: 

a) an+m(a, 2?) = an(as am (a, Z?)) [in particular (n + 77?) D 3 = n D (m n 3) ] . 

b) an(as b°) = a^(acs Z?) [in particular n n z° = a£(e, 3) and 
an(as Z?a) = <(a2

s Z?) ] . 

c) an(as b) = 2?n*-oa?(a'b) (in particular n n s = a ^ J n ^ 

It will be proved in the paper that 
z/n (3) lim n • ez/n = 1, |2| < | 5 s € I, 

n •> 00 

Moreover, the inverse function of ^s ty(z): = n n zs is explicitly calculated 
for \z\ < l/e9 and we examine the possibility to extend the definition of t, n z 
to complex values of £. 

2* The Evaluation of a Limit 

The evaluation (3) is an immediate consequence of 

Theorem 1: For all positive integers n and complex numbers z such that \z\ < 
l/es we have 

(4) |ln(nDez/*)| * \ %1^\\*Y > 
V = 1 

The fo l lowing lemma i s u s e f u l to prove (4) ( i n [ 2 ] , see formula (15) and 
s e c t i o n 4 . 1 ) . 

Lemma 1: Let /<*> := / , f[*\z) := e x p f ^ f ) and f£\ := ( / ^ , m - 1, 2 , 3 , 
. . . . We have V I(Z) ' 
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m k 

(5) c/(sa))(
m

4) = n n f^\B')^"^-3UHing> 
where 

k = l j = o 

jluKm, fc, j ) - (fe
 m_ ̂ . J l i C - l ) 8 ^ ) ^ - s ) m - f e + J', 0 < j < 2c, 1 < fc < m. 

In pa r t i cu l a r , 
( 4 ) ^ > (6) (/ua))ir;(3 = i) = n 4(i) • 

k= 1 

Proof of Theorem 1: We apply (6) r e c u r s i v e l y to 
f(0 = (w - 1) D C, (n - 2) • c, . . . , 1 • C 

Using n o £ = (n - 1) D £ c , we ge t 
(7) (n n C)(4)U = 1) = [I ((« " 1) ° 0(

fe
4) U = 1). 

£: = 1 

At the p t h s t e p , we o b t a i n (kQ: = m) i 

(8) (n D £)<4)(e = 1) 

n ••• n fci = i 

1 / 7,̂ -fc J m\ • kk 

Un - r) a SV4)(? = 1)" W ' K 
.^-feWfer-l (X) 

x(A) whence, since (1 n C)v (C = 1) = ev, v = 0, 1, 2, ..., 

(9) (n D O ^ U = 1) 

K-2 
= 11 "• 11 expl^.x • ̂ n_x L n 2 

It follows from (9) that 

(10) exp(/7? • nm-1) < (n D c)(^4)(C = 1) 

' • - ( - • ' • ^ • • • ^ . . ^ . ( f e ) •••(?,)) 
= exp(77?m» n'""1) (we use £ J ^ W " 1 = ^ + ^H""1)-

Thus, the series 

\Wt ^ ln ( (w D g ) ^ ( C = D)Z W , , 7 , 1 
>. converges for Z < — and 

(11) E 
777 = 1 

l n ( ( « D 0(
m

4)(C = D ) < — ) — s 

Let us observe that, in general, 

(12) F«\zQ) = exp(^— In F{z0e») 
In our case 

<\ m 

ln(n D C)i4)(C = 1) = —-ln(w D £w) 

so that the MacLaurin expansion of ln(nQ ez^n) , namely, 
M- ^ i / 2/n^ ^ ln(n D C)i4)(C = 1) m 
(13) ln(n n es/n) = 2_j r ^ 3 > 

I I 1 

w = 0 

7 7 7 = 1 
7!rzm 
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is valid for \z\ < l/e in view of (11). This completes the proof of Theorem 1, 
since (4) follows from (11) and (13). D 

3. The Inverse Function 

If £ = ft • z, n = 1, 2, 3, ..., then we write z = (-ft) Q £ in a domain where 
the inverse function is defined (this is essentially what is called "partial 
inverse" in [3]). The inverse function is defined in such a way that 

(14) (ft + m) D z = ft • (m D z), n, m e Z, 

To prove the next theorem, we need the following lemma. 

Lemma 2: For all complex numbers A±9 A^_9 . .., ^4m, we have 

(15) E in L_FT II V " £ I! 4 , 1 < r < m. 
Tr(m, r) M ' ••• Km'j=l vl+... + vr=m £ = 1 

V £ > 1 

Here and in what follows, i\{m3 v) means that the summation is extended over 
the numbers k\, . .., km such that 

k\ + 2k2 + • •. + mA:w = m, /q + /c2 + • • • + fcm = r, 

with /c7- > 0, 1 < j < m. 

Proof: Let 

777 = 1 ^ = 1 

be two analytic functions in a neighborhood of z = 0 such that jf(0) = ^(0) = 0. 
We have 

/(<7(H)) = Es»(?w)" = E £ ••• E s^Vl ... ^ 2
v l + "-+v" 

777 = 1 777 = 1 V i = 1 v m = l 

= E E E v ^ .-. ^„3V1 + - + U " , 
777 = 1 P =777 V]_ + • • • + V m = V 

whence v£ >l 
777 r 

(16) f(g(s)) = E E E Sr II4V, • s"1 
777 = 1 P = l V j + - • • + V r = 777 £ = 1 

n , r (/(g(^)))W(3 = 0) V r 
(17) ^ E E A l l / * . -

2- = 1 Vi + • • • + V r = 777 * - 1 
V , > 1 

On the other hand, we compute (f(g(z)))^m) using the Faa di Bruno formula [5, p. 
177], namely, 

da) ( / (^ ) ) ) ( m ) =E E k. k, n ( M ^ V •/%(»))• 
It gives us 

(f(g(z)))M(z -.0) _ " y £M ™ *, 
(19) m! " A „<£,.) ̂ 1 ••• fem!^Al/J ' 
and the result follows by comparison of (17) and (19). 

Remark: Formula (15) gives a variant of (18): 

(f(g(z))){m) * _ fi /g^OON /<*%(*0) 
m * P = l v 1 + . . . + v r = 7 7 7 £ = l \ ^ ' / 

V, > 1 
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We shall also need 

Lemma 3 [2, p. 238]: For all analytic functions cf>(3), w e have 

(21) 

A representation of (-1) • y is obtainable from the results of [3] (an 
interesting list of references is given in that paper) . It is proved that the 
function 

x = h(z) = zz* 
converges when e~e < z < e^'e ; moreover, 

g(h(z)) = z and h(g(x)) = x, e~l < x < e, 
where 

g(x) = xl!x . 
But 

1 
__— = 1 D X = ; y, 

Ax) 
whence 

i.e. , I 
-j- = (-1) D y, 

n\y) 
whence 
(22) (-1) c y = i/^"""" , e"1/e < «, < ee. 

Replacing y by (-1) n y gives a similar representation for (-2) D y, and so on. 
We give here another kind of representation for (-77?) o z, m = 1, 2, 3, ... . 

Theorem 2: For all positive integers m and complex numbers z such that 

I In z I < —, 
1 ' me 

we have 

(23) ( -*>•*-n n • •• vff e x p ( ^ ^ i . r - M 
v = 1 Vi =1 vm_2 =1 \ V! \ V X - 1 / 

... (i::i -_ j ) . v — ... v ^ r * - 1 - v : - - 1 • cm *>*). 
Proof: According to the Lagrange expansion theorem, the root z of the equation 
z In z = In £ which tends to 1 with £ is given by 

In z = f; (-1)-"1 ^ ( l n O v , | In t\ * \ . 
v = 1 v ' 

Since z In 2 = In £ implies C = s s = l D 2 , we obtain 

(24) ln((-l) o 5) = E (-D^1 ^ ( l n O v , | In ?| < |, 
V = 1 ^ * 

which corresponds to (23) for m = 1. 
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Now we r e p l a c e C by (-1) • £ i n (24) to o b t a i n 

ln( ( -2) D C) = £ ( - D ^ 1 ^ £ ••• £ ( _ i ) * i + - " + ** - v 

fcj! . . . fev! U n t ; 

< 1 
fe£> 1 

i . e . , 
, p - l JL //ffejL -1 

(25) l n ( ( - 2 ) D C) = E E X ( - D ^ 1 V " n l ^ y - r - ) • d n C)v 

The i d e n t i t y (15) wi th Aj = ^y~ g ives 

^1+ ••• +fc, = v £ = l \ ^ £ - / Tr(v,y) M > • • • K v ! j = l \ 3- I 
/ C £ > 1 

whi le (21) [with §{z) = ez] g ives 

T i ( v , y ) 1 - v * J = ! V J ' ' M 

We o b t a i n 

(28) E f i p | ^ ) = 4( v - ;)vv-u, i < y s v , 
fe1+ . . . + kp = v £ = i \ K £ ! / v ! \ y - 1/ 

fc£>i 
and i t fo l lows from (25) t h a t 

£ . ( - D V _ 1 ^ - u , . u - l / V " 1̂  
v = 1 y = 1 

It is readily seen that the coefficients in the summation over v of (29) 
are bounded by 

so that (29) is valid for |In £| < l/2e. 
The proof is easily completed by mathematical induction. We write 

ln((-(7w + 1)) n K) = ln((-m) n ((-1) a c)), 
substitute z to (-1) D ^ in (23), and use (28) to simplify the coefficients. 
The estimation 

(30) |(-m) n c| < expfi E ^j^lwz In C T j * el/m 

holds for |ln c| ^ lime. D 

Remark: It follows from the proof of Theorem 2 that 

(31) lim(-Tw) • Kl/m = 1, |ln c| < ̂ . 

(29) ln((-2) n C) = E E ^IV"1^"^11"1!. " l)( l n ° " 
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4. Extension of the Definition 

In this section, we consider the possibility to define £ D z for complex 
values of £. We give only partial results, but it is interesting to observe 
that it seems quite possible to extend £ D z to a bianalytic function of 2, £ • 
All along the process, the relation 

(32) (£i + C2) n 2 = Ci • (C2 D 2> 

should remain valid in some domains of the complex plane. 

4.1 Extension to Rational N u m b e r s 

First, we try to see how % • z can be defined. Let us consider a more gen-
eral question. Given z$ € (E and 

g(z): = J2 ak^z ~ z0^k' a 0 : = z0> 
k= 0 

analytic in a neighborhood of ZQ (this fact will be abbreviated z £) ZQ in what 
follows), does there exist an analytic function 

f ( z ) : = E b k ( z " 2o)k> ^ 0 : = 20> 
fc = 0 

such that the functional equation 

(33) f(f(z)) = g(z) 
is valid for z (?) ZQ? 

A solution is not always possible, as shown by the example 

g(z) = z1, zQ = 0. 

An affirmative answer for g(z) = zz, ZQ = 1, would imply that the solution 
f(z) =: % D % satisfies the relation 

\ D (| a z) = f(f(z)) = 1 a 3. 

To solve the functional equation 

(34) /(/(a)) = zz, f{\) = f'(l) = 1, 
we seek a solution of the form 

fiz) = 1 + E bk(z - l)k. 
fe= 1 

Substituting s to /(s), we obtain 

z* =: 1 + X > k U - Dfe = 1 + E &&(/(a) - Dfc 

&= 1 fc« 1 

- x + E E E ** II iv, • (« " D* 
(in the context of [2], it is not difficult to verify that \cLy_\ ^ 1 for all 
k € IN). It is then readily seen that the aforesaid question can be answered in 
the affirmative if we find a practical way to solve the following two problems: 

1. Express b\, bi, ..., bk in terms of a\9 ai> •••> Ciy. in the relations 
GL\ = b\ = 1, 

k v 
ak = E E K \\b , k = 1, 2, 3, ... . 

P = 1 Vl +... + vr = k 1 = 1 
v£ >1 

356 [Nov. 



ITERATIONS OF A KIND OF EXPONENTIALS 

2. Show t h a t the r a d i u s of convergence of J ] b^(z - l)k i s p o s i t i v e . 
k= 1 

We assume in the remainder of the paper that the radius of convergence is 
positive in the case g(z) = zz , z0 = 1. Unfortunately, this fact is not proved 
but it seems very likely that it is > 1. 

We generalize one step further and ask for an analytic solution of 

(35) fq(z) = z*9 /(I) = /'(I) = 1, where fq{z) = /(/(••>/(g)•••)). 

mi • -i J ^ i J- • <7 times 

This leads us to define 

(36) \ n z: = f(z)i = l + f: bJ±-)(z - l)k , z © 1, 

for q = 1, 2S 35 . .. (the domain of validity should contain |z - 1| < q/2). It 
is then possible to define p/^ • z for p/g e Q+. Simply^ 

(37) 2 • a := I D (I D ... D (I D 3J...J =: i + £2,fc(p, q)U ™ D k * * C 1. 
p times 

It appears that bk(ps q) = bk(p/q)* There is no problem defining p/q a z 
for p/q E Q._9 We construct (-l)/q a z by requiring 

(-1) (£•*) E 

and we observe that (32) remains true for all rationals £i> ^2- Heres we can 
write 

(38) | D * = a + |(s - l) 2 + | ^ - l)(;s - I)3 + ..., 2 0 1. 

4.2 Ex tens ion to Complex Number s 

I t i s r e a sonab l e to expect t h a t a passage to the l i m i t can be j u s t i f i e d in 
( 3 8 ) . This would permi t us to de f ine t o z for t E IR by 

(39) t a z i= l im £ bJ^f) . (a - l ) * = £ M * ) 9 ^ " 1 ^ ^ 1 > 
J + co k = 0 W j / fe = Q 

where p?-/ 7̂-5 J = 1, 2S 3S . .., is any sequence of rational numbers converging 
to t [note that the coefficients bk(t) are reals for real values of t). 

Finally5 (.39) is extended to complex values of t by analytic continuation 
and (32) remains valid. We do not give details of our calculations, since the 
question concerning the radius of convergence is open. At the end of the 
process we obtain a representation of the form 

(40) c • s = z + c(s - i)2 + e(c - |)(s - D 3 + ••-, c C o s 2 6 I. 

We can define ac(as z) [see (2)] by requiring 

a^(a9 s) = c a ^ 

Some O b s e r v a t i o n s 

5 .1 Solution of a Func t iona l Equat ion 

We observe t h a t the f u n c t i o n a l equa t ion 

(41) fq(z) = a*, / ( 0 ) = 0, N e IN 
can be so lved . 
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Theorem 3: Let 21/ > 1 be an integer. There exists an analytic solution, in a 
neighborhood of the origin, of the equation (41) if and only if N = M^, M E IN. 
The solution is unique up to a multiplicative constant which must be an (!LzA\th 

root of unity, 

Proof: If N = Mq, then a solution of (41) is 
N-l 

f(z) = ozM, cM~^ = 1. 
We must prove that an analytic solution f(z), z 0 Q* exists only in that case. 

Equation (41) implies 

(42) f(z") = (/(3))», f(0) = 0, (N > 1). 

Let us assume for a moment that the solutions of (42) are of the form 

f(z) = czM, o® = o9 

for some positive integer M. Substituting in (41), we find that 

ZN = Cl + M+ •..+ Mq~l . zMq 

N-l 
i.e., N = M and cM~l = 1. Hence, we need only to prove that all the analytic 
solutions of (42) are of the indicated form. Let 

f(z) = X Amzm 

m= 1 

be a s o l u t i o n of ( 4 2 ) . We have 

J W ) = E V " " - ( / ( a ) ) * = E ••• E ^v, •••A^.-z k = ( / ( a ) ) » = JT . . . V^ ^ . . . ^ . ^ i + -

A/ 

= E E n^,-^, 
m = N Vi + • • • + V/y = 777 £ = 1 

whence v£> l (43) V UAv -f1* i f m = kN> kEm 
v , + • • • + v , v = 777 j t - i £ (0 o t h e r w i s e . 

v£ >i ' 

This relation, for m = N, gives ^f = Als i.e., i } = 0 or ̂ f_1 = 1. The 
following reasoning is easily adapted to the case Ai * 0 [we obtain the 
solution f(z) = Aiz], Let us suppose that Ai = 0. Let kG > 1 be the first 
index for which A^Q * 0. We prove by mathematical induction that AkQ+i = 0, £ 
= 1, 2, 3, ... [this gives us the solution f(z) = A^Qzko 9 AN

k(] = A k Q ) . 
First, we examine the relation (43) with m = Nk.Q + 1. If a v£ is less than 

k$9 then the corresponding term, in the left-hand member of (43), is equal to 
zero. Thus, we examine only the solutions of 

(44) Vl + v2 + ... + v^ = NkQ + 1, v£ > k0, 1 < £ < N. 

Let v^ = ... = v£g = A:0 (s < N) and Vj > k$ + 1, j * l\> . .., £s. In view 
of (44), we have 

Nk0 + 1 > sk0 +(/!/- s)(fc0 + 1), 

whence s > N - 1 and, in fact, s = N - 1. Since the right-hand member of (43) 
is zero, this relation is reduced to A^~ • A% +i = 0, i.e., A% +1 = 0. 

Now we suppose that ̂ 0 + i = ••• = ̂ 0+£-l = 0, £ > 1, and examine the rela-
tion (43) with m = NkQ + £. Let us consider the equation 

(45) vi + v2 + ••• + v^ = Nk0 + £, v£ > kQ, 1 < £ < N. 

If v £ l = . . . = v£ r = fc0 (r < N) , then vj > ?CQ + £ for j * £ x , . . . , lr ( i n o rde r 
to have 4V l . . . ^v^ * 0 ) , so t h a t NkQ + £ > rk0 + (N - r)(k0+ £ ) , whence r = 
N-l and (43) i s reduced to 
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NAN-ie A = Uk i f Nk0 + i = kN 
^o+£ [0 otherwise3 

for some integer k. The possibility Nk0 + £ = kN implies k = kQ + l/N; but 

k0 < k0 + fl < k0 + ^3 

so that ^ = 0 by hypothesis. In both cases, we conclude that ̂  = 0. D 

Remarks: The examples 

Z a 
/(*) = (1 - b))z + U)' 

show that other solutions of (41) are possible for N = 1. We may compare (42) 
with Wedderburn1 s functional equation gix2-) = [g(x)]2- + lax (see [1] for refer-
ences) . 

5.2 Solution of a Recurrence Relation 

There is a relation similar to 1 which may be solved without difficulty. 
Let Am, Bm, m = 1, 2, 3, ... be two sequences of complex numbers related by 

m ? 

(46) Am = £ £ n Bv,, m = 1, 2, 3, ... . 
V = I V } + • • • + V r = 777 & - 1 

We have V£ " 
m v 

(47) Bm = £ £ (-1)2'-1 rUvt, m = 1, 2, 3, ... . 
p = l V 1 + - - - + V r = 777 £ = 1 

V £ > I 

Proof: Let 

/(*) := (1 - zYl , ^(s) := X Z ^ . 
7 7 7 = 1 

Using Faa di Bruno's formula in the form (20), we obtain 

</(,(.)»••>(. - 0> . £ f, , 
^ ' P = l v 1 + . - - + V r = 7 7 7 ^ = l 

whence £ 

/(<?(*)) - i + E 4 zm = 
m = 1 

It follows that 

and by comparison of the coefficients: 
7 7 ? " 1 

(48) Bm = Am - £ ^ - A > rc * 2« 
S = 1 

T h u s , m _ i / s - 1 
Bm= Am~ A^.A, - £ Am-s{&s ~ E A*-tBt 

s=2 \ t=l 
m - \ 777-1 s - 1 

= i l m - E ^ - ^ s + E Y,Am-sAs.tBt 
s= I s=2 t=1 

7 7 7 - 1 S - 1 

- E ^ - E ^ v 2 + E E^- 8 ^-* 5 f 
V ]_ = 77? V 1 + ^̂  2 = ^ S = 2 t = l 

At the nth step, we obtain 
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n r m - I Si - I 

= E (-1)'-1 E 0 \ + (-D" E E 
r = 1 vi + >. •• + vr = m I = i Si = n s2 = n - 1 

v, > 1 
8 „ _ ! - 1 

J ] Am-8l - • • ^ s„_ i - e „ ' 5 s „ , f o r n = 1 , 2 , . . . , (7W - 1) . s„ = l 

This g ives us 
7 7 2 - 1 V 

sm = E (-Dr_1 E n ^ . + H r 1 ^ 
P = l V i + • • • + V r = 777 £ = 1 

V£ > 1 
777 p 

- Z(-iy-x E n^vt . D 
2° = 1 v X + . . • + V r = 777 jl = 1 

V £ > 1 

5.3 An Identity 

Using (32)5 we can write 

3 f N ((a + /z) D z) - (a a z) (h • (a a s)) - (a D s) 
— (a D z) = lim = lim , 
da h + o h h + o h 

and (40) [with t, = h and z replaced by (an z) ] gives 

(49) -^(a n z) = ((a a s ) - I) 2 - |((a D s) - I)3 + •-• . 

On the other hand, (40) gives directly 

(50) ~{a a z) = (z - l)2 + (la - \){z - l)3 + •••, 

whence 

(51) ((a D z) - l)2 - |((a a s ) - l)3 + ... 

= {z - D 2 + [la - |)(s - I)3 + ..., 3(3 1, a 6 0. 

5.4 An Appearance of the Fibonacci Numbers 

The recurrence relation 1 (section 4.1) may be written in the form 

(52) i r k - ^ E E br- f[bVl, k>3. 
v£ >i 

To find a bound for |&k|(|#k| < 1), we may try to use (52) with k = r, k = 
v£ and make the substitutions. To do that, we need to take into account that 
(52) holds only for k > 2>. In particular, we must examine, separately, the 
solutions of V! + • • • + vr = k with 1 < \>e < 2, 1 < I < r. This leads us to 
evaluate the summation 

(53) £ E 1 =:, E Ppik, 2), 
2 l<v, <2 2 

where pr (k, 2) is the number of solutions of Vj +•••+ vr= fc, 1 < v£ < 2. This 
number is (^ r) ; indeed, if v£l =... = v£s = 1 and v£ = 2, £ * £1? ..., £s, then 
s • 1 + (P - s) • 2 = k, so that s = 2v - k and the number of solutions is 

\s) = \2r - k) = \k - r) 

(see also the Remark below). Hence, we obtain (see [4], p. 14, Problem 1): 

360 [Nov. 



ITERATIONS OF A KIND OF EXPONENTIALS 

(54) E pr(k, 2) = E L r_ ) = fk, k = 05 1, 25 .... 
j<r<k V \<v<kXK V> 

the kth Fibonacci number, 

Remark: Using the generating function 

and the Leibniz formula5 we deduce that the number of solutions, p (k, M), of 
the equation V]_ + • • • + vp = A:3 1 < v^ < M? is equal to 

(55) pr(k, M) = £ (-DJ'(J)f "JH" l ) , v < k < rM. 
In particulars r̂ --l 

M * . « = | H ) ' ( | ; « ; ' ) • ( , ! , ) . " * « * • • 
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