CONTINUED FRACTIONS OF GIVEN SYMIMETRIC PERIOD

Franz Halter-Koch

Karl-Franzens-Universität, Ha1bärthgasse 1/I, A-8010 Graz, Österreich

(Submitted October 1989)

1. If $D>1$ is a rational number, not a square, then \sqrt{D} has a (simple) continued fraction expansion of the form

$$
\sqrt{D}=\left[b_{0}, \overline{b_{1}}, \ldots, b_{k-1}, 2 b_{0}\right]
$$

with $k \geq 1$ and positive integers b_{i} such that the sequence (b_{1}, \ldots, b_{k-1}) is symmetric, i.e., $b_{i}=b_{k-i}$ for all $i \in\{1, \ldots, k-1\}$. Necessary and sufficient conditions on b_{0}, \ldots, b_{k-1} which guarantee that D is an integer are stated in [3; §26]. Recently, C. Friesen [1] gave a fresh proof of these conditions. He deduced, moreover, that for a given symmetric sequence (b_{1}, \ldots, b_{k-1}) there is either no integral D such that the continued fraction expansion of \sqrt{D} has the given sequence as its symmetric part or there are infinitely many squarefree such D.

In this paper, I shall prove a more precise statement. Starting with the conditions as in [3; §26] I will show that, given a symmetric sequence which meets these conditions, there are infinitely many D with prescribed p-adic exponent $v_{p}(D)$ for finitely many p and $p^{2} X D$ for all other p, such that \sqrt{D} has the given sequence as the symmetric part of its continued fraction expansion. Moreover, I will show that about $2 / 3$ (resp. 5/6) of all symmetric sequences of the given even (resp. odd) length are symmetric parts of the continued fraction expansion of \sqrt{D} for some integral D. Finally, I consider the corresponding questions for the continued fraction expansion of $(1+\sqrt{D}) / 2$ for an integral $D \equiv 1(\bmod 4)$.
2. I begin by citing Satz [3; 3.17] in an appropriate form.

Theorem 1: Let $\left(b_{1}, \ldots, b_{k-1}\right)(k \geq 1)$ be a symmetric sequence in N_{+}and let $b_{0} \in \mathrm{~N}_{+}$. Then the following assertions are equivalent:
a) $\left[b_{0}, \overline{b_{1}, \ldots, b_{k-1}, 2 b_{0}}\right]=\sqrt{D}$ with $D \in \mathrm{~N}_{+}$;
b) $\quad b_{0}=\frac{1}{2} \cdot\left[m e-(-1)^{k} f g\right]$ for some $m \in Z$, where e, f, and g are defined by the matrix equation

$$
\left(\begin{array}{ll}
e & f \tag{1}\\
f & g
\end{array}\right)=\prod_{i=1}^{k-1}\left(\begin{array}{cc}
b_{i} & 1 \\
1 & 0
\end{array}\right) .
$$

If this condition is fulfilled, then

$$
\begin{equation*}
D=b_{0}^{2}+m f-(-1)^{k} g^{2} \tag{2}
\end{equation*}
$$

In order to state more precise results, I introduce the following notation. Definition: For a symmetric sequence of positive integers (b_{1}, \ldots, b_{k-1}) $(k \geq 1)$ 1et

$$
\mathscr{D}\left(b_{1}, \ldots, b_{k-1}\right)
$$

be the set of all $D \in \mathrm{~N}_{+}$with $\sqrt{D}=\left[b_{0}, \overline{b_{1}}, \ldots, b_{k-1}, 2 b_{0}\right]$ for some $b_{0} \in N_{+}$.

Corollary 1: Let $\left(b_{1}, \ldots, b_{k-1}\right)$ be a symmetric sequence in N_{+}and define e, f, g by (1). Then the following assertions are equivalent:
a) $\mathscr{D}\left(b_{1}, \ldots, b_{k-1}\right) \neq \emptyset$.
b) Either $e \equiv 1(\bmod 2)$ or $e \equiv f g \equiv 0(\bmod 2)$.

If b) is fulfilled, then $\mathscr{D}\left(b_{1}, \ldots, b_{k-1}\right)$ consists of all $D \in N_{+}$which are of the form

$$
\begin{equation*}
D=\frac{e^{2} m^{2}}{4}+\left[f-(-1)^{k} \frac{e f g}{2}\right] \cdot m+\left[\frac{f^{2} g^{2}}{4}-(-1)^{k} g^{2}\right] \tag{3}
\end{equation*}
$$

with $m \in \mathrm{Z}$ satisfying $m e-(-1)^{k} f g>0$.
Proof: The conditions stated in b) are necessary and sufficient for the existence of $m \in Z$ such that

$$
b_{0}=\frac{1}{2} \cdot\left[m e-(-1)^{k} f g\right]
$$

is a positive integer. Inserting this expression for b_{0} in (2) yields (3). \square
Applying Corollary 1 to the special sequence $\left(b_{1}, \ldots, b_{k-1}\right)=(1, \ldots, 1)$ gives

$$
\left(\begin{array}{ll}
e & f \\
f & g
\end{array}\right)=\left(\begin{array}{cc}
F_{k} & F_{k-1} \\
F_{k-1} & F_{k-2}
\end{array}\right)
$$

where $\left(F_{n}\right)_{n \geq-1}$ is the ordinary Fibonacci sequence defined by

$$
F_{-1}=1, F_{0}=0, F_{n+1}=F_{n}+F_{n-1}
$$

Taking into account that $F_{k} \equiv 0(\bmod 2)$ if and only if $k \equiv 0(\bmod 3)$, I obtain Corollary 2: $\mathscr{D}(\underbrace{1, \ldots, 1}) \neq \varnothing$ if and only if $k \not \equiv 0(\bmod 3)$.

$$
(k-1)
$$

3. Now I investigate the possible prime powers dividing $D \in \mathscr{D}\left(b_{1}, \ldots, b_{k-1}\right)$ for a given symmetric sequence (b_{1}, \ldots, b_{k-1}).

For $n \in Z, n \neq 0$, and a prime p, set

$$
v_{p}(n)=\omega \text { if } p^{w} \mid n, p^{w+1} \nmid n(w \geq 0)
$$

The following result is an immediate consequence of the arguments given in [2; §2].
Lemma: Let $F(X)=A X^{2}+B X+C \in Z[X]$ be a quadratic polynomial. For a prime p, set

$$
E_{p}(F)=\left\{w \in \mathrm{~N} \mid v_{p}(F(x))=w \text { for some } x \in \mathrm{Z}\right\}
$$

Let P be a finite set of primes, $w_{p} \in E_{p}(F)$ for $p \in P$, and suppose that, for every prime $p \notin P$, the congruence $F(x) \equiv 0\left(\bmod p^{2}\right)$ has at most two solutions x $\left(\bmod p^{2}\right)$. Then there exist infinitely many $x \in \mathrm{~N}$, such that

$$
v_{p}(F(x))=w_{p} \text { for all } p \in P
$$

and

$$
v_{p}(F(x)) \leq 1 \text { for all primes } p \notin P .
$$

Now let $\left(b_{1}, \ldots, b_{k-1}\right)(k \geq 1)$ be a symmetric sequence of positive integers. Define e, f, and g by (1) and, depending on these numbers, for every prime p, a set $E_{p}=E_{p}(e, f, g, k) \subset N$ of possible exponents as follows:
a) $p \neq 2$.

$$
\begin{aligned}
& \text { 2. } \\
& E_{p}=\left\{\begin{array}{l}
\{0\}, \text { if } e \equiv 1(\bmod 2), p \nmid e, \text { and }\left(\frac{(-1)^{k}}{p}\right)=-1 ; \\
\mathrm{N}, \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

b) $p=2, e \equiv 1(\bmod 2)$:

$$
E_{2}= \begin{cases}\{0,1\}, & \text { if } k \equiv 1(\bmod 2) ; \\ N \backslash\{1,2\}, & \text { if } k \equiv 0(\bmod 2) .\end{cases}
$$

c) $p=2, e \equiv f g \equiv 0(\bmod 2)$:

$$
E_{2}= \begin{cases}\mathrm{N}_{+}, & \text {if } e \equiv 2, g \equiv 0(\bmod 4) ; \\ \mathrm{N}, & \text { otherwise }\end{cases}
$$

With these definitions, it is possible to state Theorem 2, which generalizes the results of [1]:
Theorem 2: Let $\left(b_{1}, \ldots, b_{k-1}\right)(k \geq 1)$ be a symmetric sequence of positive integers, define e, f, and g by (1), and suppose that either $e \equiv 1$ (mod 2) or $e \equiv f g \equiv 0(\bmod 2)$. For a prime p, let $E_{p}=E(e, f, g, k)$ be defined as above.
i) If $D \in \mathscr{D}\left(b_{1}, \ldots, b_{p-1}\right)$, then $v_{p}(D) \in E_{p}$ for all primes p.
ii) Let P be a finite set of primes and $\omega_{p} \in E_{p}$ for $p \in P$. Then there are infinitely many $D \in \mathscr{D}\left(b_{1}, \ldots, b_{k-1}\right)$ such that $v_{p}(D)=\omega_{p}$ for all $p \in P$ and $v_{p}(D) \leq 1$ for all primes $p \notin P$.
Proof:
Case 1. $e \equiv 1(\bmod 2)$. By (1), eg $-f^{2}=(-1)^{k+1}$ and thus $f+g \equiv 1$ (mod 2). It follows from (3) that $D \in N$ if and only if m is even. Set $m=2 n$; then, by (3),

$$
\begin{equation*}
D=D(n)=e^{2} n^{2}+\left[2 f-(-1)^{k} e f g\right] \cdot n+\left[\frac{f^{2} g^{2}}{4}-(-1)^{k} g^{2}\right] \tag{4}
\end{equation*}
$$

By the above Lemma, it is enough to show that for every prime p the following two assertions are true:

1. $E_{p}=\left\{v_{p}(D(x)) \mid x \in \mathrm{Z}\right\}$.
2. The congruence $D(x) \equiv 0\left(\bmod p^{2}\right)$ has at most two solutions $x\left(\bmod p^{2}\right)$.

From (4) I obtain, by an easy calculation,

$$
\begin{aligned}
e^{2} \cdot D(n) & =\left[e^{2} n+f-(-1)^{k} \frac{e f g}{2}\right]^{2}-(-1)^{k} \\
D^{\prime}(n) & =2 e^{2} n+2 f-(-1)^{k} e f g
\end{aligned}
$$

If $p \mid e, p \neq 2$, the congruence $D(x) \equiv 0\left(\bmod p^{w}\right)$ has exactly one solution x (mod p^{ω}) for every $\omega \geq 1$ and thus there are $x \in Z$ with $v_{p}(D(x))=\omega$ for every $\omega \geq 0$. If $p \nmid e, p \neq 2$, and $\left[(-1)^{k} / p\right]=-1$, the congruence $D(x) \equiv 0(\bmod p)$ has no solution. If $p \nmid e, p \neq 2$, and $\left[(-1)^{k} / p\right]=1$, the congruence $D(x) \equiv 0(\bmod p)$ has two different solutions; these satisfy $D^{\prime}(x) \not \equiv 0(\bmod p)$ and, therefore, for every $\omega \geq 0$, there are $x \in \mathrm{Z}$ with $v_{p}(D(x))=\omega$, and the congruence $D(x) \equiv 0$ (mod p^{2}) also has exactly two solutions modulo p^{2}.

If $k \equiv 1(\bmod 2)$, the congruence $D(x) \equiv 0(\bmod 4)$ is unsolvable, but since $D(0) \not \equiv D(1)(\bmod 2)$, there are $x \in \mathrm{Z}$ with $v_{2}(D(x))=w$ for $w=0$ and $w=1$.

If $k \equiv 0(\bmod 2)$, then

$$
D(n) \equiv\left(n+f+\frac{e f g}{2}\right)^{2}-1(\bmod 8) ;
$$

thus $D(x) \equiv 0(\bmod 2)$ already implies $D(x) \equiv 0(\bmod 8)$, the congruence $D(x) \equiv 0$ (mod 4) has exactly two solutions x (mod 4), and for every $w \geq 3$ there are $x \in$ Z with $v_{2}(D(x))=w$.

Case 2: $e \equiv f g \equiv 0(\bmod 2) . \quad$ By (1), eg $-f^{2}=(-1)^{k+1}$; thus, $\mathcal{k} \equiv 0$ (mod 2), $f \equiv 1(\bmod 2)$, and $e g \equiv 0(\bmod 8)$. It follows from (3) that $D \in Z$ for all $m \in Z$; therefore, I have to consider the polynomial

$$
D=D(m)=\frac{e^{2}}{4} \cdot m^{2}+\left(f-\frac{e f g}{2}\right) \cdot m+\left(\frac{f^{2} g^{2}}{4}-g^{2}\right) .
$$

Again it is enough to show that for every prime p the following two assertions are true:

1. $E_{p}=\left\{v_{p}(D(x)) \mid x \in \mathrm{Z}\right\}$.
2. The congruence $D(x) \equiv 0\left(\bmod p^{2}\right)$ has at most two solutions $x\left(\bmod p^{2}\right)$.

First, observe that

$$
e^{2} D(m)=\left(\frac{e^{2}}{2} \cdot m+f-\frac{e f g}{2}\right)^{2}-1
$$

If $p \neq 2$, the congruence $D(x) \equiv 0(\bmod p)$ has at least one and at most two solutions $x(\bmod p)$, and these satisfy $D^{\prime}(x) \not \equiv 0(\bmod p)$. Therefore, for every $\omega \in \mathrm{N}$, there are $x \in \mathrm{Z}$ with $v_{p}(D(x))=\omega$, and the congruence $D(x) \equiv 0\left(\bmod p^{2}\right)$ has at most two solutions $x\left(\bmod p^{2}\right)$.

Suppose now that $e \equiv 2(\bmod 4)$ and $g \equiv 0(\bmod 4)$. Then $D(m) \equiv m^{2}+f m(\bmod$ $4)$, and it follows that $D(m) \equiv 0(\bmod 2)$ for all $m, D^{\prime}(m) \equiv 1(\bmod 2)$ for all m, the congruence $D(x) \equiv 0(\bmod 4)$ has exactly two solutions $x(\bmod 4)$, and for every $w \in \mathrm{~N}$ there are $x \in \mathrm{Z}$ with $v_{p}(D(x))=\omega$.

If $e \equiv 0(\bmod 4)$ or $g \equiv 2(\bmod 4)$, then the congruence $D(x) \equiv 0(\bmod 2)$ is soluble, and from $D^{\prime}(x) \equiv 1(\bmod 2)$ for all x, it follows that the congruence $D(x) \equiv 0(\bmod 4)$ has at most two solutions $x(\bmod 4)$ and that, for every $w \in \mathrm{~N}$, there are $x \in \mathrm{Z}$ with $v_{p}(D(x))=w$.
4. In this section it will be shown that about $2 / 3$ (resp. 5/6) of all symmetric integer sequences $\left(b_{1}, \ldots, b_{k-1}\right)$ satisfy $\mathscr{D}\left(b_{1}, \ldots, b_{k-1}\right) \neq \emptyset$. To do this, define $\theta: Z \rightarrow G L_{2}\left(F_{2}\right)$ by

$$
\theta(\alpha)=\left(\begin{array}{ll}
\alpha & 1 \\
1 & 0
\end{array}\right) \quad(\bmod 2) ;
$$

for a finite sequence (b_{1}, \ldots, b_{m}) define

$$
\theta\left(b_{1}, \ldots, b_{m}\right)=\prod_{j=1}^{m} \theta\left(b_{j}\right) \in G L_{2}\left(\mathbf{F}_{2}\right)
$$

Obviously, $\theta\left(b_{1}, \ldots, b_{m}\right)$ depends only on $b_{1}, \ldots, b_{m}(\bmod 2)$. Put

$$
\sigma=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right), \quad \tau=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \in G L_{2}\left(F_{2}\right)
$$

and find $\sigma^{3}=\tau^{2}=1, \sigma \tau=\tau \sigma^{2}\left[\right.$ as $\left.G L_{2}\left(F_{2}\right) \simeq \mathscr{S}_{3}\right]$. With these definitions, the following holds.
Theorem 3: Let $\left(b_{1}, \ldots, b_{k-1}\right)(k \geq 1)$ be a symmetric sequence of positive integers.
i) $\quad\left(b_{1}, \ldots, b_{k-1}\right) \neq \emptyset$ if and only if $\theta\left(b_{1}, \ldots, b_{k-1}\right) \neq \sigma^{2}$.
ii) If k is even, $k=2 \ell$, then $\theta\left(b_{1}, \ldots, b_{k-1}\right)=\sigma^{2}$ if and only if $\theta\left(b_{1}, \ldots, b_{\ell-1}\right) \in\left\{\tau, \sigma^{2}\right\}$ and $b_{l} \equiv 1(\bmod 2)$.
Furthermore, if N_{ℓ} denotes the number of all

$$
\left(b_{1}, \ldots, b_{\ell-1}\right) \in\{0,1\}^{\ell-1} \text { with } \theta\left(b_{1}, \ldots, b_{\ell-1}\right) \in\left\{\tau, \sigma^{2}\right\}
$$

then

$$
N_{\ell}=\frac{2^{\ell-1}+(-1)^{\ell}}{3}
$$

iii) If k is odd, $k=2 \ell+1$, then $\theta\left(b_{1}, \ldots, b_{k-1}\right)=\sigma^{2}$ if and only if

$$
\theta\left(b_{1}, \ldots, b_{\ell}\right) \in\{\sigma, \sigma \tau\}
$$

1991]

Furthermore, if N_{ℓ}^{\prime} denotes the number of all

$$
\theta\left(b_{1}, \ldots, b_{\ell}\right) \in\{0,1\}^{\ell} \text { with } \theta\left(b_{1}, \ldots, b_{\ell}\right) \in\{\sigma, \sigma \tau\},
$$

then

$$
N_{\ell}^{\prime}=N_{\ell+1} .
$$

Proof: i) is an immediate consequence of Corollary 1. If $k=2 \ell$ and

$$
\theta\left(b_{1}, \ldots, b_{l-1}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L_{2}\left(F_{2}\right),
$$

then

$$
\theta\left(b_{1}, \ldots, b_{k-1}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
b_{\ell} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)\left(\begin{array}{cc}
a b_{\ell} & a b_{l} c+1 \\
a b_{l} c+1 & c b_{\ell}
\end{array}\right)
$$

and thus

$$
\theta\left(b_{1}, \ldots, b_{k-1}\right)=\sigma^{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
$$

if and only if $a=0, c=b_{l}=1$. Since

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L_{2}\left(\mathrm{~F}_{2}\right),
$$

this implies also $b=1$. Therefore, $\theta\left(b_{1}, \ldots, b_{k-1}\right)=\sigma^{2}$ if and only if

$$
\theta\left(b_{1}, \ldots, b_{\ell-1}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & d
\end{array}\right) \in\left\{\tau, \sigma^{2}\right\}
$$

If $k=2 \ell+1$ and
then

$$
\theta\left(b_{1}, \ldots, b_{\ell}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L_{2}\left(F_{2}\right)
$$

$$
\theta\left(b_{1}, \ldots, b_{k-1}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)=\left(\begin{array}{cc}
a+b & a c+b d \\
a c+b d & c+d
\end{array}\right)=\sigma^{2}
$$

if and only if $a=b=1$ and $d=c+1$, i.e.,

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in\left\{\begin{array}{ll}
\sigma, & \sigma \tau
\end{array}\right\} .
$$

To obtain the formulas for N_{l} and N_{l}^{\prime}, consider the number

$$
\left.A_{n}(\xi)=\sharp\left(b_{1}, \ldots, b_{n}\right) \in\{0,1\}^{n} \mid \theta\left(b_{1}, \ldots, b_{n}\right)=\xi\right\}
$$

for any $n \in \mathrm{~N}_{+}$and $\xi \in G L_{2}\left(\mathrm{~F}_{2}\right)$. These quantities satisfy the recursion formulas

$$
\begin{aligned}
A_{1}(\sigma) & =A_{1}(\tau)=1, \\
A_{1}(\xi) & =0 \text { for all } \xi \in G L_{2}\left(\mathrm{~F}_{2}\right) \backslash\{\sigma, \tau\}, \\
A_{n+1}(\xi) & =A_{n}\left(\xi \sigma^{2}\right)+A_{n}(\xi \tau) \text { for all } \xi \in G L_{2}\left(\mathrm{~F}_{2}\right),
\end{aligned}
$$

which have the solution

$$
\begin{aligned}
& A_{n}(\sigma)=A_{n}(\tau)=\frac{2^{n-1}+2(-1)^{n-1}}{3} \\
& A_{n}(\xi)=\frac{2^{n-1}+(-1)^{n}}{3} \text { for } \xi \in G L_{2}\left(\mathbf{F}_{2}\right) \backslash\{\sigma, \tau\}
\end{aligned}
$$

Therefore, for $\ell \geq 2$,

$$
\begin{aligned}
& N_{\ell}=A_{\ell-1}(\tau)+A_{\ell-1}\left(\sigma^{2}\right)=\frac{2^{\ell-1}+(-1)^{\ell}}{3}, \\
& N_{\ell}^{\prime}=A_{\ell}(\sigma)+A_{\ell}(\sigma \tau)=\frac{2^{\ell}+(-1)^{\ell+1}}{3}=N_{\ell+1},
\end{aligned}
$$

and these formulas remain true for $\ell=1$.
[Nov.
5. In this final section I formulate the corresponding results for the continued fraction expansion of $(1+\sqrt{D}) / 2$ for $D \equiv 1(\bmod 4)$; as the proofs are very similar to those for \sqrt{D}, I leave them to the reader. (For Theorem IA, see Satz [3; 3.34].)
Theorem 1A: Let ($\left.b_{1}, \ldots, b_{k-1}\right)(k \geq 1)$ be a symmetric sequence in N_{+}and let $b_{0} \in \mathrm{~N}_{+}$. Then the following assertions are equivalent:
a) $\left[b_{0}, \overline{b_{1}, \ldots, b_{k-1}, 2 b_{0}-1}\right]=\frac{1+\sqrt{D}}{2}$ with $D \in \mathrm{~N}_{+}, D \equiv 1(\bmod 4)$.
b) $b_{0}=\frac{1}{2} \cdot\left[1+m e-(-1)^{k} f g\right]$ for some $m \in Z$, where e, f, and g are defined by (1).

If this condition is fulfilled, then

$$
D=\left(2 b_{0}-1\right)^{2}+4 m f-4 \cdot(-1)^{k} g^{2} .
$$

Definition: For a symmetric sequence of positive integers (b_{1}, \ldots, b_{k-1}) $(k \geq 1)$ let $\mathscr{D}^{\prime}\left(b_{1}, \ldots, b_{k-1}\right)$ be the set of all $D \in \mathrm{~N}_{+}$with $D \equiv 1(\bmod 4)$ and

$$
\frac{1+\sqrt{D}}{2}=\left[b_{0}, \overline{b_{1}, \ldots, b_{k-1}, 2 b_{0}-1}\right] \text { for some } b_{0} \in N_{+}
$$

Corollary 1A: Let $\left(b_{1}, \ldots, b_{k-1}\right)$ be a symmetric sequence in N_{+}and define e, f, g by (1). Then the following assertions are equivalent:
a) $\mathscr{D}^{\prime}\left(b_{1}, \ldots, b_{k-1}\right) \neq \emptyset$.
b) Either $e \equiv 1(\bmod 2)$ or $e \equiv f g+1 \equiv 0(\bmod 2)$.

If b) is fulfilled, then $\mathscr{D}^{\prime}\left(b_{1}, \ldots, b_{k-1}\right)$ consists of all $D \in \mathrm{~N}_{+}, D \equiv 1$ (mod 4), which are of the form

$$
D=e^{2} m^{2}+\left[4 f-2 \cdot(-1)^{k} e f g\right] \cdot m+\left[f^{2} g^{2}-4 \cdot(-1)^{k} g^{2}\right]
$$

with $m \in \mathrm{Z}$ satisfying $1+m e-(-1)^{k} f g>0$.
Corollary 2A: $\mathscr{D}^{\prime}(1, \ldots, 1) \neq \emptyset$ (always).
Theorem 2A: Let $\left(b_{1}, \ldots, b_{k-1}\right)(k \geq 1)$ be a symmetric sequence of positive integers, define e, f, g by (1), and suppose that either $e \equiv 1$ (mod 2) or $e \equiv f g+1 \equiv 0(\bmod 2)$. Let P^{\prime} be the set of all odd primes p with $p \nmid e$ and

$$
\left(\frac{(-1)^{k}}{p}\right)=-1
$$

i) If $D \in \mathscr{D}^{\prime}\left(b_{1}, \ldots, b_{k-1}\right)$ and $p \in P^{\prime}$, then $p \nmid D$.
ii) Let P be a finite set of odd primes, $P \cap P^{\prime}=\emptyset$ and $\left(\omega_{p}\right)_{p \in P}$ a sequence in N. Then there are infinitely many $D \in \mathscr{D}^{\prime}\left(b_{1}, \ldots, b_{k-1}\right)$ such that $v_{p}(D)=$ ω_{p} for all $p \in P$ and $v_{p}(D) \leq 1$ for all primes $p \notin P$.
Theorem $3 A$: Let $\left(b_{1}, \ldots, b_{k-1}\right)(k \geq 1)$ be a symmetric sequence of positive integers. Then $\mathscr{D}^{\prime}\left(\bar{b}_{1}, \ldots, \bar{b}_{k-1}\right)=\emptyset$ if and only if k is even, $k=2 \ell$, and $b_{\ell} \equiv 0(\bmod 2)$.

References

1. C. Friesen. "On Continued Fractions of Given Period." Proc. AMS 103 (1988): 9-14.
2. T. Nage11. "Zur Arithmetik der Polynome." Abh. Math. Sem. Univ. Hamburg 1 (1922):184-88.
3. 0. Perron. Die Lehre von den Kettenbrüchen. Bd. 1. Teubner, 1954.
