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1. Introduction 

Let {Wq} be a recurrence sequence of order n (n E N) and let its generating 
function be given by 

- W\(z) 
(1) W(z) = 22 Wqz = —n » 

*-o \\ (i - tyz) 
3= l 

where Wi (s) is a polynomial in z with deg Wi(z) = 777. For a positive integer k, 
let Wfc(s) denote the generating function of the sequence {wi} of the kth powers 
of Wq. It is known that Wk(z) is a rational function in z (see [6] or [8]). 
The aim of this paper is to study the degrees of polynomials in the numerator 
and denumerator of Wk{z), This paper is similar in character to [4]. 

The function Wk(z) has been studied with m = n - 1 in [8] and [11]. Gen-
erating functions for powers of third-order recurrence sequences have been 
studied in [13], and those of second-order recurrence sequences in [1], [3], 
[5], [7], [9], [10], and [12]. 

The proof of our result is based on the following theorem by Hadamard: 
If A(z) = f] anzn, B{z) = £ bnzn, and C(z) = £ anbnzn, 

n=0 n-0 n-0 
then 

where y is a contour in the s plane, which includes the singularities of 
B(z/s)/s and excludes the singularities of A(s) . If the radius of convergence 
of A(z) [resp. B(z)] is R (resp. it")» then the radius of convergence of C{z) is 
at least RRr, and y may, for example, be any circle between |s| = R and |s| = 
\z\/R' (see [6], p. 813, [14], pp. 157-59). 

2. The Generating Function wk(z) 

Theorem: Let {wq} be a recurrence sequence of order n and let its generating 
function be given by (1). Then 

(2) wk(z) = -±—, 
where 

^ .00 = t I ! ^K7n (1 - b\l • • • fn
n z), N0 = N u {0}, 

r1 + • • •+ r n = fc 

and Wk(z) is a polynomial in z with 

deg J/k(s) £ \ k~ ) - n + 77?. 
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Proof: C l e a r l y W^{z) c a n b e w r i t t e n i n t h e f o i 
777 - p 

WY{z) = wpzp \ \ (1 - a.tz), 0 < p < m, 
i = 1 

w h e r e p i s t h e l e a s t i n t e g e r s u c h t h a t Wp * 0 . Assume f i r s t t h a t bj * bj f o r 
^1 X ^2 a n <^ ^ i * ^ "^or J = ^ ' ^ ' . . . ? n . Then we d i s t i n g u i s h two c a s e s : 
m < n, m > n. 

Case 1. Let 77? < n. We proceed by induction on k. If k = 1, the theorem 
holds. Assume it holds for k = K (K > 1) . We shall prove that it holds for 
k = K + 1. Applying Hadamard's theorem and the Cauchy residue theorem and 
noting that the appropriate winding numbers are = 1, we obtain 

: + i ( s ) = Y^J WK^W^IS') 
as 
s 

m - p 

- I f 
I'm}-, 

WK(s)wvzP I"! ( s - ^z) 
^ = 1 , 

— • — s n ~ m - l d s 71 

n (i - b*1-- br
n« S) U(s - b,z) 

m - p 
WK(bhz)wp [1 (bh - a.) 

= L — — — _ _ _ _ _ _ _ _ -z>*-*-i. 
n (i - b\i ••• *# v > fi (̂ 2 - fy) 

Pl + • • • +rn = A7 j = i 
Denote briefly j*7z 

777 - p rz 

Ch = wP H (feh " **) n (Aft - Aj)-1^-™"1-
i= 1 J =1 

O*) - n + ,+ ,(i - *? • • • *?:l *£+i • • • *»«) • 
r± + • - • + rh _ 1 + rh + j + • • - + rn - K + 1 x ' 

(h) 
Converting the fraction in the sum over h by EK+l(z)9 we obtain 

£CftMV>0*> 
( 3 ) » ^ ( a ) - " ' W « ) • 

The number of solutions of the equation P1 + ••• + vn = K in (r1, ..., Pn) e NQ 
is equal to 

rir1)-
Thus 5 t h e number of s o l u t i o n s of t h e e q u a t i o n v\ + • • • + v1 , + r7 , + • • • + r^ 

^ 1 h- l h+ l n 

= K + 1 i n ( r 1 5 . . . , ^ _ 1 ? ^ + 1 » • • • > *Vz) G N o i s e ( l u a l t 0 
(n + K - 1\ 
\ X + 1 / 

This is plainly the degree of the polynomial EK + l{z). Thus, the degree of the 
polynomial in the numerator of the fraction of (3) is less than or equal to 

In + K - 1\ , , in + K - 1\ 

that is, less than or equal to 

In + {K + 1) - 1N 
^ + ! > - n + m. 

This proves the theorem in Case 1. 
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Case 2. Let m > n. We proceed by induction on k in this case, too. The 
theorem holds for k = 1. Assume it holds for k = K. Then the series WK(z) can 
be written in the form 

a~b UK{z) 
wK(z) = L ^ ^ t + 7T77V5 

where 
TI / ̂  ̂  (n + K ~ l \ ^ -u (n + K - 1\ 

a = deg WK(z) < ̂  R ) - n + m, b = { R J 
and UK(z) is a polynomial in z of degree < b. Note that a - b < m - n. The 
series w(z) can be written in the form 

m - n # n /[ 
w(z) = Yjviz^+ 12 i _ h—• 

j=0 J £ = 0 i ^ £ S 

Applying Hadamard's theorem and the Cauchy residue theorem and noting that the 
appropriate winding numbers are =1, we obtain 

W* + l(*) = 27iJY WK{S)w(zl8)^f 

^ r a- b m- n zj ^ r a- b n Qi 

- 2¥iJY £ £ W ^ d s + 2i?JY £„ EM* 7 ^ 1 & 

+ 2TTiJY A 0 DK{8) VJ S J+1 ^ + 2TTi JT £ Q Z?*(S) S - b,Z ^ 

a-b a-b n . . m - n . n UK(bzz) 

where 57- (j = 0, 1, . .., 777 - n) is a complex constant. Now we can see, after 
some calculations, that ̂ +i(^) c a n be- written in the form 

^ + 1 ( 2 ) 
W X + 1 U J DK+l(z)' 

where 
, , ^ In + (Z + 1) - 1\ 

deg ^ + 1 ( s ) * ( K+ I ) ~ n + 777. 

This proves the theorem in Case 2, 

Now the theorem is proved when bjl * bj2 f° r d\ * J2 anc* Ĵ * 0 for j = 1, 
2, ..., n. But the coefficients of 2^ (g = 0, 1, ...) in the series W-^(z) and 
in the polynomials W^(s) and D^iz) are polynomials in the variables zJp, a^, and 
bj. Thus, taking limits bj1 -> &j2 , Z?j •> 0 proves that the theorem holds for 
all £>]_, . .., bn. This completes the proof. 

Remark: It should be noted that, in the case in which two or more of the bj 
are equal, the treatment used at the end of the proof does not have to give the 
best possible result (cf. [8], Sec. 7). However, application of Hadamardrs 
theorem and Cauchyfs residue theorem would be too laborious in that case. 

Example: Let {wq} E {Fq}, the Fibonacci sequence, and let a = (1 + /5)/2, and 
3 = (1 - /5)/2. Then, for Z = 1, formula (3) is 

a(a - 3)_1(1 - 32s) + 3(3 - a)_1(l - a2z) 
F2(z) = , 

(1 - a2z)(l - a3s)(l - 32s) 
which gives the well-known formula 
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1 ~ Z 
F (;3) = 

1 - 2s - Iz1 + z3 

(see, e.g., [2]; [13], p. 794), 
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