ON GENERATING FUNCTIONS FOR POWERS OF RECURRENCE SEQUENCES

Pentti Haukkanen
University of Tampere, P.0. Box 607, SF-33101 Tampere, Finland
Jerzy Rutkowski
Adam Mickiewicz University, ul. Matejki 48/49, Poznań, Poland
(Submitted December 1989)

1. Introduction

Let $\left\{w_{q}\right\}$ be a recurrence sequence of order $n(n \in \mathrm{~N})$ and let its generating function be given by

$$
\begin{equation*}
w(z) \equiv \sum_{q=0}^{\infty} w_{q} z^{q}=\frac{W_{1}(z)}{\prod_{j=1}^{n}\left(1-b_{j} z\right)}, \tag{1}
\end{equation*}
$$

where $W_{1}(z)$ is a polynomial in z with $\operatorname{deg} W_{1}(z)=m$. For a positive integer k, let $w_{k}(z)$ denote the generating function of the sequence $\left\{w_{q}^{k}\right\}$ of the $k{ }^{\text {th }}$ powers of w_{q}. It is known that $w_{k}(z)$ is a rational function in z (see [6] or [8]). The aim of this paper is to study the degrees of polynomials in the numerator and denumerator of $w_{k}(z)$. This paper is similar in character to [4].

The function $w_{k}(z)$ has been studied with $m=n-1$ in [8] and [11]. Generating functions for powers of third-order recurrence sequences have been studied in [13], and those of second-order recurrence sequences in [1], [3], [5], [7], [9], [10], and [12].

The proof of our result is based on the following theorem by Hadamard:
If $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$, and $C(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n}$,
then

$$
C(z)=\frac{1}{2 \pi i} \int_{\gamma} A(s) B(z / s) \frac{d s}{s},
$$

where γ is a contour in the s plane, which includes the singularities of $B(z / s) / s$ and excludes the singularities of $A(s)$. If the radius of convergence of $A(z)$ [resp. $B(z)]$ is R (resp. R^{\prime}), then the radius of convergence of $C(z)$ is at least $R R^{\prime}$, and γ may, for example, be any circle between $|s|=R$ and $|s|=$ $|z| / R^{\prime}$ (see [6], p. 813, [14], pp. 157-59).

2. The Generating Function $w_{k}(z)$

Theorem: Let $\left\{w_{q}\right\}$ be a recurrence sequence of order n and let its generating function be given by (1). Then

$$
\begin{equation*}
w_{k}(z)=\frac{W_{k}(z)}{D_{k}(z)}, \tag{2}
\end{equation*}
$$

where

$$
D_{k}(z)=\prod_{\substack{\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{N}_{0}^{n} \\ r_{1}+\cdots+r_{n}=k}}\left(1-b_{1}^{r_{1}} \cdots b_{n}^{r_{n}} z\right), \mathbf{N}_{0}=\mathbf{N} \cup\{0\},
$$

and $W_{k}(z)$ is a polynomial in z with

$$
\operatorname{deg} W_{k}(z) \leq\binom{ n+k-1}{k}-n+m .
$$

ON GENERATING FUNCTIONS FOR POWERS OF RECURRENCE SEQUENCES

Proof: Clearly $W_{1}(z)$ can be written in the form

$$
W_{1}(z)=w_{p} z^{p} \prod_{i=1}^{m-p}\left(1-a_{i} z\right), 0 \leq p \leq m
$$

where p is the least integer such that $w_{p} \neq 0$. Assume first that $b_{j_{1}} \neq b_{j_{2}}$ for $j_{1} \neq j_{2}$ and $b_{j} \neq 0$ for $j=1,2$, ..., n. Then we distinguish two cases: $m<n, m \geq n$.

Case 1. Let $m<n$. We proceed by induction on k. If $k=1$, the theorem holds. Assume it holds for $k=K(K \geq 1)$. We shall prove that it holds for $k=K+1$. Applying Hadamard's theorem and the Cauchy residue theorem and noting that the appropriate winding numbers are $=1$, we obtain

$$
\begin{aligned}
w_{K+1}(z) & =\frac{1}{2 \pi i} \int_{\gamma} w_{K}(s) w(z / s) \frac{d s}{s} \\
& =\frac{1}{2 \pi i} \int_{\gamma} \frac{W_{K}(s) w_{p} z^{p} \prod_{i=1}^{m-p}\left(s-a_{i} z\right)}{\prod_{r_{1}+\cdots+r_{n}=K}\left(1-b_{1}^{r_{1}} \cdots b_{n}^{r_{n}} s\right) \prod_{j=1}^{n}\left(s-b_{j} z\right)} s^{n-m-1} d s \\
& =\sum_{n=1}^{n} \frac{w_{K}\left(b_{h} z\right) w_{p} \prod_{i=1}^{m-p}\left(b_{h}-a_{i}\right)}{\prod_{r_{1}}^{n}+\cdots+r_{n}=K}\left(1-b_{1}^{r_{1}} \cdots b_{n}^{r_{n}} b_{h} z\right) \prod_{\substack{j=1 \\
j \neq h}}^{n}\left(b_{h}-b_{j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& C_{h}=w_{p} \prod_{i=1}^{m-p}\left(b_{h}-a_{i}\right) \prod_{\substack{j=1 \\
j \neq h}}^{n}\left(b_{h}-b_{j}\right)^{-1} b_{h}^{n-m-1} \\
& E_{K+1}^{(h)}(z)=\prod_{1}+\cdots+r_{h-1}+r_{h+1}+\cdots+r_{n}=K+1
\end{aligned} \prod_{1}\left(1-b_{1}^{r_{1}} \cdots b_{h-1}^{r_{h-1}} b_{h+1}^{r_{h+1}} \cdots b_{n}^{r_{n}} z\right) \cdot . ~ l
$$

Converting the fraction in the sum over h by $E_{K+1}^{(h)}(z)$, we obtain

$$
\begin{equation*}
w_{K+1}(z)=\frac{\sum_{h=1}^{n} C_{h} W_{K}\left(b_{h} z\right) E_{K+1}^{(h)}(z)}{D_{K+1}(z)} \tag{3}
\end{equation*}
$$

The number of solutions of the equation $r_{1}+\ldots+r_{n}=K$ in $\left(r_{1}, \ldots, r_{n}\right) \in \mathbf{N}_{0}^{n}$ is equal to

$$
(n+\underset{K}{K}-1)
$$

Thus, the number of solutions of the equation $r_{1}+\cdots+r_{n-1}+r_{h+1}+\cdots+r_{n}$ $=K+1$ in $\left(r_{1}, \ldots, r_{h-1}, r_{h+1}, \ldots, r_{n}\right) \in N_{0}^{n-1}$ is equal to

$$
\binom{n+K-1}{k+1}
$$

This is plainly the degree of the polynomial $E_{K+1}^{(h)}(z)$. Thus, the degree of the polynomial in the numerator of the fraction of (3) is less than or equal to

$$
\binom{n+K-1}{K}-n+m+\binom{n+K-1}{K+1}
$$

that is, less than or equal to

$$
\binom{n+(K+1)-1}{K+1}-n+m
$$

This proves the theorem in Case 1.

Case 2. Let $m \geq n$. We proceed by induction on k in this case, too. The theorem holds for $k=1$. Assume it holds for $k=K$. Then the series $w_{K}(z)$ can be written in the form

$$
w_{K}(z)=\sum_{i=0}^{a-b} u_{i} z^{i}+\frac{U_{K}(z)}{D_{K}(z)},
$$

where

$$
a=\operatorname{deg} W_{K}(z) \leq\binom{ n+K-1}{K}-n+m, \quad b=\binom{n+K-1}{K}
$$

and $U_{K}(z)$ is a polynomial in z of degree $<b$. Note that $a-b \leq m-n$. The series $w(z)$ can be written in the form

$$
w(z)=\sum_{j=0}^{m-n} v_{j} z^{j}+\sum_{\ell=0}^{n} \frac{A_{\ell}}{1-b_{\ell} z}
$$

Applying Hadamard's theorem and the Cauchy residue theorem and noting that the appropriate winding numbers are $=1$, we obtain

$$
\begin{aligned}
w_{K+1}(z)= & \frac{1}{2 \pi i} \int_{\gamma} w_{K}(s) w(z / s) \frac{d s}{s} \\
= & \frac{1}{2 \pi i} \int_{\gamma} \sum_{i=0}^{a-b} \sum_{j=0}^{m-n} u_{i} v_{j} s^{i} \frac{z^{j}}{s^{j+1}} d s+\frac{1}{2 \pi i} \int_{\gamma} \sum_{i=0}^{a-b} \sum_{\ell=0}^{n} u_{i} A_{\ell} \frac{s^{i}}{s-b_{\ell} z} d s \\
& +\frac{1}{2 \pi i} \int_{\gamma} \sum_{j=0}^{m-n} \frac{U_{K}(s)}{D_{K}(s)} v_{j} \frac{z^{j}}{s^{j+1}} d s+\frac{1}{2 \pi i} \int_{\gamma} \sum_{\ell=0}^{n} \frac{U_{K}(s)}{D_{K}(s)} \frac{A_{\ell}}{s-b_{\ell} z} d s \\
= & \sum_{i=0}^{a-b} u_{i} v_{i} z^{i}+\sum_{i=0}^{a-b} \sum_{\ell=0}^{n} u_{i} A_{\ell} b_{\ell}^{j} z^{i}+\sum_{j=0}^{m-n} B_{j} v_{j} z^{j}+\sum_{\ell=0}^{n} \frac{U_{K}\left(b_{\ell} z\right)}{D_{K}\left(b_{\ell} z\right)} A_{\ell},
\end{aligned}
$$

where $B_{j}(j=0,1, \ldots, m-n)$ is a complex constant. Now we can see, after some calculations, that $\omega_{K+1}(z)$ can be written in the form

$$
w_{K+1}(z)=\frac{W_{K+1}(z)}{D_{K+1}(z)}
$$

where

$$
\operatorname{deg} W_{K+1}(z) \leq\binom{ n+(K+1)-1}{K+1}-n+m
$$

This proves the theorem in Case 2.
Now the theorem is proved when $b j_{1} \neq b j_{2}$ for $j_{1} \neq j_{2}$ and $b_{j} \neq 0$ for $j=1$, $2, \ldots, n$. But the coefficients of $z^{q}(q=0,1, \ldots)$ in the series $w_{k}(z)$ and in the polynomials $W_{k}(z)$ and $D_{k}(z)$ are polynomials in the variables w_{p}, α_{i}, and b_{j}. Thus, taking limits $b_{j_{1}} \rightarrow b_{j_{2}}, b_{j} \rightarrow 0$ proves that the theorem holds for all b_{1}, \ldots, b_{n}. This completes the proof.
Remark: It should be noted that, in the case in which two or more of the b_{j} are equal, the treatment used at the end of the proof does not have to give the best possible result (cf. [8], Sec. 7). However, application of Hadamard's theorem and Cauchy's residue theorem would be too laborious in that case.
Example: Let $\left\{w_{q}\right\} \equiv\left\{F_{q}\right\}$, the Fibonacci sequence, and let $\alpha=(1+\sqrt{5}) / 2$, and $\beta=(1-\sqrt{5}) / 2$. Then, for $K=1$, formula (3) is

$$
F_{2}(z)=\frac{\alpha(\alpha-\beta)^{-1}\left(1-\beta^{2} z\right)+\beta(\beta-\alpha)^{-1}\left(1-\alpha^{2} z\right)}{\left(1-\alpha^{2} z\right)(1-\alpha \beta z)\left(1-\beta^{2} z\right)}
$$

which gives the well-known formula

$$
F_{2}(z)=\frac{1-z}{1-2 z-2 z^{2}+z^{3}}
$$

(see, e.g., [2]; [13], p. 794).

References

1. L. Carlitz. "Generating Functions for Powers of Certain Sequences of Numbers." Duke Math. J. 29 (1962):521-37.
2. S. W. Golomb. Problem 4270. Amer. Math. Monthly 64 (1957):49.
3. H. W. Gould. "Generating Functions for Products of Powers of Fibonacci Numbers." Fibonacci Quarterly 1 (1963):1-16.
4. P. Haukkanen \& J. Rutkowski. "On the Usual Product of Rational Arithmetic Functions." Colloq. Math. 59 (1990):191-96.
5. A. F. Horadam. "Generating Functions for Powers of a Certain Generalized Sequence of Numbers." Duke Math. J. 32 (1965):437-46.
6. D. A. Klarner. "A Ring of Sequences Generated by Rational Functions." Amer. Math. Monthly 74 (1967):813-16.
7. I. I. Kolodner. "On a Generating Function Associated with Generalized Fibonacci Sequences." Fibonacci Quarterly 3(1965):272-78.
8. A. J. van der Poorten. "A Note on Recurrence Sequences." J. Proc. Roy. Soc. New South Wales 106 (1973):115-17.
9. B. S. Popov. "Generating Functions for Powers of Certain Second-Order Recurrence Sequences." Fibonacci Quarterly 15 (1977):221-24.
10. J. Riordan. "Generating Functions for Powers of Fibonacci Numbers." Duke Math. J. 29 (1962):5-12.
11. A. G. Shannon. "Explicit Expressions for Powers of Linear Recursive Sequences." Fibonacci Quarterly 12 (1974):281-87.
12. A. G. Shannon. "A Method of Carlitz Applied to the $k^{\text {th }}$ Power Generating Function for Fibonacci Numbers." Fibonacci Quarterly 12 (1974):293-99.
13. A. G. Shannon \& A. F. Horadam. "Generating Functions for Powers of Third Order Recurrence Sequences." Duke Math. J. 38 (1971):791-94.
14. E. C. Titchmarsh. The Theory of Functions. 2nd ed. Oxford: Oxford University Press, 1939.
