SECOND-ORDER STOLARSKY ARRAYS

Clark Kimberling
University of Evansville, Evansville, IN 47222
(Submitted December 1989)

In 1977, Kenneth B. Stolarsky [6] introduced an array $s(i, j)$ of positive integers such that every positive integer occurs exactly once in the array, and every row satisfies the familiar Fibonacci recurrence:

$$
s(i, j)=s(i, j-1)+s(i, j-2) \text { for all } j \geq 3 \text { for all } i \geq 1
$$

The first seven rows of Stolarsky's array begin as shown here:

1	2	3	5	8	13	21	\ldots
4	6	10	16	26	42	68	\ldots
7	11	18	29	47	76	123	\ldots
9	15	24	39	63	102	165	\ldots
12	19	31	50	81	131	212	\ldots
14	23	37	60	97	157	254	\ldots
17	28	45	73	118	191	309	\ldots

Hendy [4], Butcher [2], and Gbur [3] considered Stolarsky's array, and Morrison [5] and Burke and Bergum [1, p. 146] considered closely related arrays. In particular, Gbur discussed arrays whose row recurrence is given by

$$
s(i, j)=a s(i, j-1)+s(i, j-2),
$$

which, for $\alpha=1$, is the row recurrence for Stolarsky's original array. In this note, we show that any one of a larger class of second-order recurrences can be used to construct infinitely many Stolarsky arrays.

Define a Stolarsky pre-array (of q rows) as an array $s(i, j$) of distinct positive integers satisfying

$$
s(i, j)=a s(i, j-1)+b s(i, j-2) \text { for all } j \geq 3 \text { for } 1 \leq i \leq q,
$$

where α and b are integers satisfying $1 \leq \hbar \leq \alpha$, and the numbers $1,2,3, \ldots$, q are all present in the array. By a Stolarsky array we shall mean an array $s(i, j)$ whose first q rows comprise a Stolarsky pre-array for every positive integer q. For the following Stolarsky pre-array, $q=2, a=1$, and $b=1$:

1	4	5	9	12	23	37	60	\ldots
2	8	10	18	28	46	74	120	\ldots

In order to construct Row 3 beginning with $s(3,1)=3$, note that $s(3,2)$ cannot be 4 or 5, as these appear in Row 1 ; nor 6 , as then $s(3,3)=9$, already in Row 1; nor 7 nor 8 nor 9 nor 10 nor 11. These observations illustrate the problem: once q rows of a (prospective) Stolarsky array have been constructed, can Row $q+1$ always be constructed? We shall show that the answer is yes, and that, actually, Row $q+1$ can be constructed in infinitely many ways.

The symbols s_{1}, s_{2}, ... will always represent a sequence of the following kind:
(i) $s_{1}>0, s_{2}>0$, and $s_{n}=a s_{n-1}+b s_{n-2}$ for $n \geq 3$,
where a and b are integers satisfying $1 \leq b \leq a$. Let

$$
\alpha=\frac{a+\sqrt{a^{2}+4 b}}{2} \text { and } \beta=\alpha-\alpha \text {, }
$$

so that $\alpha>1,-1<\beta<0$, and the identities $\alpha^{2}=\alpha \alpha+b$ and $\beta^{2}=\alpha \beta+b$ yield

$$
\begin{equation*}
s_{n}=a_{1} \alpha^{n}+b_{1} \beta^{n} \text { for all } n \geq 1, \text { where } \tag{ii}
\end{equation*}
$$

$$
\alpha_{1}=\frac{s_{1} \beta-s_{2}}{\alpha(\beta-\alpha)} \quad \text { and } \quad b_{1}=\frac{s_{2}-s_{1} \alpha}{\beta(\beta-\alpha)}
$$

Similarly, the symbols t_{1}, t_{2}, \ldots will always mean a sequence given by

$$
t_{n}=a t_{n-1}+b t_{n-2}=a_{2} \alpha^{n}+b_{2} \beta^{n}
$$

where

$$
a_{2}=\frac{t_{1} \beta-t_{2}}{\alpha(\beta-\alpha)} \quad \text { and } \quad b_{2}=\frac{t_{2}-t_{1} \alpha}{\beta(\beta-\alpha)}, \quad \text { and } t_{1}>0, t_{2}>0
$$

Lemma 1.1: There exists a positive integer N such that $s_{n+1}=\left[\alpha s_{n}+\frac{1}{2}\right]$ for every $n \geq N$. The least such N is $2+\left[\log _{\alpha / b} 2\left|\alpha s_{1}-s_{2}\right|\right]$.
Proof: $\quad \alpha s_{n}=\alpha\left(\alpha_{1} \alpha^{n}+b_{1} \beta^{n}\right)=a_{1} \alpha^{n+1}+b_{1} \beta^{n+1}+\alpha b_{1} \beta^{n}-b_{1} \beta^{n+1}$

$$
=s_{n+1}+b_{1} \beta^{n}(\alpha-\beta),
$$

so that $s_{n+1}=\left[\alpha s_{n}+\frac{1}{2}\right]$ if and only if $0<b_{1} \beta^{n}(\alpha-\beta)+\frac{1}{2}<1$. This is equivalent to $-1<2\left(\alpha s_{1}-s_{2}\right) \beta^{n-1}<1$, hence to

$$
\left(\frac{b}{\alpha}\right)^{n-1}=\left|\beta^{n-1}\right|<\frac{1}{2\left|\alpha s_{1}-s_{2}\right|}
$$

and hence equivalent to $n-1 \geq \log _{\alpha / b} 2\left|\alpha s_{1}-s_{2}\right|$, as required.
Lemma 1.2: Suppose s_{1} is not among t_{1}, t_{2}, \ldots, and t_{1} is not among s_{1}, s_{2}, Let

$$
M=2+\left[\log _{\alpha / b} 2\left|\alpha s_{1}-s_{2}\right|\right] \quad \text { and } \quad N=2+\left[\log _{\alpha / b} 2\left|\alpha t_{1}-t_{2}\right|\right]
$$

If $m \geq M, n \geq N$, and $s_{m}<t_{n} \leq s_{m+1}$, then $s_{m}<t_{n}<s_{m+1}<t_{n+1}<s_{m+2}<\ldots$.
Proof: Suppose $m \geq M$ and $n \geq N$. By Lemma 1.1, $s_{i+1}=\left[\alpha s_{i}+\frac{1}{2}\right]$ for every $i \geq m$ and $t_{i+1}=\left[\alpha t_{i}+\frac{1}{2}\right]$ for every $i \geq n$. So, if $t_{n}=s_{m+1}$, then

$$
\left[\alpha t_{n}+\frac{1}{2}\right]=\left[\alpha s_{m+1}+\frac{1}{2}\right]
$$

so that $t_{n+1}=s_{m+2}$. But then $a t_{n}+b t_{n-1}=a s_{m+1}+b s_{m}$, so that $t_{n-1}=s_{m}$. But then $a t_{n-1}+b t_{n-2}=a s_{m}+b s_{m-1}$, so that $t_{n-2}=s_{m-1}$. Continuing, we eventually reach $t_{1}=s_{p}$ for some $p \geq 1$ or else $t_{q}=s_{1}$ for some $q \geq 1$, contrary to the hypothesis.

Now that we have $s_{m}<t_{n}$ and $t_{n}<s_{m+l}$, the remaining inequalities in the asserted chain follow by induction: $s_{p}<t_{q}$ implies

$$
\left[\alpha s_{p}+\frac{1}{2}\right]<\left[\alpha t_{q}+\frac{1}{2}\right]
$$

so that $s_{p+1}<t_{q+1}$, and $t_{q}<s_{r}$ similarly implies $t_{q+1}<s_{r+1}$.
Lemma 1.3: Suppose s_{1}, s_{2}, and t_{1} are given and $t_{1}>s_{1}$. For $k \geq 1$, let $t_{j}^{(k)}$ denote the sequence $t_{1}, t_{2}=t_{1}+k, t_{3}=a t_{2}+b t_{1}$, ... Then there exist positive integers C and K, both independent of k, such that if $k>K$ and $m>$ $C\left[\log _{\alpha} k\right]$ and n is the index satisfying $s_{m}<t_{n}^{(k)} \leq s_{m+1}$, then

$$
s_{m}<t_{n}^{(k)}<s_{m+1}<t_{n+1}^{(k)}<s_{m+1}<\cdots .
$$

Proof: Let

$$
M=2+\left[\log _{\alpha / b} 2\left|\alpha s_{1}-s_{2}\right|\right] \quad \text { and } \quad N(k)=2+\left[\log _{\alpha / b} 2\left|\alpha t_{1}-t_{1}-k\right|\right]
$$

Let $p(k)$ be the index satisfying

$$
s_{p(k)}<t_{N(k)}^{(k)} \leq s_{p(k)+1}
$$

Clearly, there is a positive integer K_{1} so large that $p(k) \geq M$ for all $k \geq K_{1}$. For such k, Lemma 1.2 gives

$$
\begin{equation*}
s_{p(k)+h}<t_{N(k)+h}^{(k)}<s_{p(k)+1+h} \text { for all } h \geq 0 \tag{1}
\end{equation*}
$$

Also, for all $k \geq K_{1}$,

$$
a_{1} \alpha^{p(k)}+b_{1} \beta^{p(k)}=s_{p(k)}<t_{N(k)}^{(k)}=a_{2} \alpha^{N(k)}+b_{2} \beta^{N(k)}<\left(a_{2}+\left|b_{2}\right|\right) \alpha^{N(k)}
$$

Let A, B, K_{2} be positive integers, with $K_{2}>K_{1}$, all independent of K, satisfying $a_{2}+\left|b_{2}\right|<A+B k$ for all $k>K_{2}$; to see that such A and B exist, observe

$$
\alpha_{2}=\frac{t_{1} \beta-\left(t_{1}+k\right)}{\alpha(\beta-\alpha)} \quad \text { and } \quad b_{2}=\frac{t_{1}+k-t_{1} \alpha}{\beta(\beta-\alpha)}
$$

For all such k,

$$
a_{1} \alpha^{p(k)}<(A+B k) \alpha^{N(k)}+Q(k), \text { where } Q(k)=1+\left|b_{1} \beta^{p(k)}\right|
$$

Then

$$
a_{1} \alpha^{p(k)}<Q(k)+(A+B k) \alpha^{2+\log _{\alpha / b} 2\left|\alpha t_{1}-t_{1}-k\right|}
$$

so that

$$
\alpha_{1} \alpha^{p(k)}<Q(k)+\alpha^{2}(A+B k)\left(2\left|\alpha t_{1}-t_{1}-k\right|\right)^{\frac{1}{1-\log _{\alpha} b}}
$$

Applying $\log _{\alpha}$ to both sides and the inequality $\log _{\alpha}(x+y)<\log _{\alpha} x+\log _{\alpha} y$ to the resulting right-hand side yields

$$
\begin{aligned}
p(k)+\log _{\alpha} \alpha_{1}<\log _{\alpha} Q(k) & +2+\log _{\alpha}(A+B k) \\
& +\frac{1}{1-\log _{\alpha} b} \log _{\alpha}\left(2\left|\alpha t_{1}-t_{1}-k\right|\right)
\end{aligned}
$$

Now $\lim _{k \rightarrow \infty} Q(k)=1$, so that there must exist positive integers C and K_{3}, independent of k, with $K_{3}>K_{2}$, such that

$$
p(k)+1<C\left[\log _{\alpha} k\right] \text { for all } k>K_{3}
$$

For such k, if m is any integer that exceeds $C[\log k]$, then $m=p(k)+h$ for some $h \geq 1$. For $n=\mathbb{N}(k)+m-p(k)$, the stated chain of inequalities follows from (1).
Theorem: Let $S=\{s(x, y): 1 \leq x \leq q, y \geq 1\}$ be a Stolarsky pre-array. Suppose $t_{1} \notin S$ and $t_{1}>\max \{s(x, 1): 1 \leq x \leq q\}$. Then there exist infinitely many numbers t_{2} such that no term of the sequence $t_{1}, t_{2}, t_{3}=a t_{2}+b t_{1}$, ... lies in S.
Proof: Suppose, to the contrary, that there are at most finitely many numbers $k \geq 1$ for which the sequence $t_{1}, t_{2}=t_{1}+k, t_{3}=a t_{2}+b t_{1}, \ldots$ contains no element of S. Let k_{1} be the greatest of these k. Let $t_{1}^{(k)}, t_{2}^{(k)}$, ... denote the (a, b)-recurrence sequence whose first two terms are t_{1} and $t_{2}=t_{1}+k_{1}+k$. Then, for every positive integer k, the sequence $t_{1}^{(k)}, t_{2}^{(k)}, \ldots$ contains a term of S. That is, there exist indices $j(k), x(k)$, and $y(k)$ for which

$$
\begin{align*}
& t_{j(k)}^{(k)}=s(x(k), y(k)), \text { where } \tag{2}\\
& 1 \leq x(k) \leq q \tag{3}
\end{align*}
$$

On the other hand, by Lemma 1.3 , there exist constants $C_{1}, C_{2}, \ldots, C_{q}$ and K_{1}, K_{2}, \ldots, K_{q}, all independent of k, such that for $x=1,2, \ldots, q$, if

$$
y_{x}>C_{x}\left[\log _{\alpha} k\right]
$$

where $k>K_{x}$ and j_{x} is the index for which

$$
s\left(x, y_{x}\right)<t_{j_{x}}^{(k)} \leq s\left(x, y_{x}+1\right)
$$

then equation (2) cannot hold for any $j(k) \leq j_{x}$. Accordingly, (2) implies

$$
\begin{equation*}
1 \leq y(k) \leq C_{x(k)}[\log k] \text { for all } k>K=\max \left\{K_{1}, K_{2}, \ldots, K_{q}\right\} \tag{4}
\end{equation*}
$$

Now, since the index $x(k)$ in (2) is $\leq q$, we have $s(x(k), 1)<t_{1}^{(k)}$ for all k, by hypothesis, and aiso $s(x(k), 2)<t_{2}^{(k)}$ for all k larger than some K^{*}. Therefore, in equation (2), $j(k) \leq y(k)$, so that

$$
\begin{equation*}
1 \leq j(k) \leq C_{x(k)}\left[\log _{\alpha} k\right] \text { for all } k>K^{*} \tag{5}
\end{equation*}
$$

Let $m(k)=\left[\log _{\alpha} k\right] \max \left\{C_{1}, C_{2}, \ldots, C_{q}\right\}$. Then, for all $k>\mathbb{K}=\max \{K, K *\}$, we have

$$
1 \leq x(k) \leq q, 1 \leq y(k) \leq m(k), 1 \leq j(k) \leq m(k) .
$$

Let k^{\prime} be any integer large enough that $k^{\prime}>q\left[m\left(\mathbb{K}+k^{\prime}\right)\right]^{2}$. Then, for $k=1$, $2,3, \ldots, k^{\prime}$, we have
$1 \leq x(\mathbb{K}+k) \leq q, 1 \leq y(\mathbb{K}+k) \leq m\left(\mathbb{K}+k^{\prime}\right), 1 \leq j(\mathbb{K}+k) \leq m\left(\mathbb{K}+k^{\prime}\right)$.
Now, the total number of distinct triples (x, y, j) that can satisfy three such inequalities is the product $q\left[m\left(\mathbb{K}+k^{\prime}\right)\right]^{2}$, but we have more than this number. Therefore, there exist distinct k_{u} and k_{v} for which

$$
x\left(k_{u}\right)=x\left(k_{v}\right), y\left(k_{u}\right)=y\left(k_{v}\right), j\left(k_{u}\right)=j\left(k_{v}\right) .
$$

This means that the sequences

$$
t_{1}, t_{2}^{\left(k_{u}\right)}, \ldots, t_{j\left(k_{u}\right)}^{\left(k_{u}\right)}, \ldots \quad \text { and } t_{1}, t_{2}^{\left(k_{v}\right)}, \ldots, t_{j\left(k_{v}\right)}^{\left(k_{v}\right)}, \ldots
$$

have identical first terms and identical $j\left(k_{u}\right)^{\text {th }}$ terms. But this implies
$t_{2}^{\left(k_{u}\right)}=t_{2}^{\left(k_{v}\right)}$,
contrary to $k_{u} \neq k_{v}$. This contradiction finishes the proof.

Conclusion

An obvious consequence of the theorem is that any Stolarsky pre-array can be extended to a Stolarsky array. For each new row, one need only choose t_{1} to be the least positive integer satisfying the hypothesis of the theorem; that is, the least not yet present in the array being constructed. This choice ensures that every positive integer must occur in the constructed Stolarsky array.

References

1. J. R. Bruke \& G. E. Bergum. "Covering the Integers with Linear Recurrences" in Applications of Fibonacci Numbers. Dordrecht: Kluwer Acedemic Publishers, 1988, 143-47.
2. J. C. Butcher. "On a Conjecture Concerning a Set of Sequences Satisfying the Fibonacci Difference Equation." Fibonacci Quarterly 16 (1978):81-83.
3. M. E. Gbur. "A Generalization of a Problem of Stolarsky." Fibonacci Quarterly 19 (1981):117-21.
4. M. D. Hendy. "Stolarsky's Distribution of the Positive Integers." Fibonacci Quarterly 16 (1978):70-80.
5. D. R. Morrison. "A Stolarsky Array of Wythoff Pairs" in A Collection of Manuscripts Related to the Fibonacci Sequence. Santa Clara, Calif: The Fibonacci Association, 1980, 134-36.
6. K. B. Stolarsky. "A Set of Generalized Fibonacci Sequences Such That Each Natural Number Belongs to Exactly One." Fibonacci Quarterly 15 (1977):224.
