
SECOND-ORDER STOLARSKY ARRAYS 

Clark Kimber l ing 
University of Evansvil le, Evansvil le , IN 47222 

(Submitted December 1989) 

In 1977, Kenneth B. S t o l a r s k y [6] i n t roduced an a r r a y s(i, j ) of p o s i t i v e 
i n t e g e r s such t h a t every p o s i t i v e i n t e g e r occurs e x a c t l y once in the a r r a y , and 
every row s a t i s f i e s the f a m i l i a r F ibonacc i r e c u r r e n c e : 

s(i, j) = s(i, j - 1) + s(i, J - 2) for a l l j > 3 for a l l i > I. 

The first seven rows of Stolarsky's array begin as shown here; 

1 
4 
7 
9 
12 
14 
17 

2 
6 
11 
15 
19 
23 
28 

3 
10 
18 
24 
31 
37 
45 

5 
16 
29 
39 
50 
60 
73 

8 
26 
47 
63 
81 
97 
118 

13 
42 
76 
102 
131 
157 
191 

21 
68 
123 
165 
212 
254 
309 

Hendy [4], Butcher [2], and Gbur [3] considered Stolarsky's array, and Morrison 
In [5] and Burke and Bergum [1, p. 146] considered closely related arrays 

particular, Gbur discussed arrays whose row recurrence is given by 

s(i, j) = as(i, j - l) + s(i, j - 2), 

which, for a = 1, is the row recurrence for Stolarsky's original array. In 
this note, we show that any one of a larger class of second-order recurrences 
can be used to construct infinitely many Stolarsky arrays. 

Define a Stolarsky pre-array (of q rows) as an array s(i, j) of distinct 
positive integers satisfying 

s(i, j) = as(i9 j - 1) + bs(i, j - 2) for all j > 3 for 1 < i < q, 

where a and b are integers satisfying 1 < b < a, and the numbers 1, 2, 3, . .., 
q are all present in the array. By a Stolarsky array we shall mean an array 
s(i, j) whose first q rows comprise a Stolarsky pre-array for every positive 
integer q. For the following Stolarsky pre-array, q = 2, a = 1, and b = 1: 

1 4 
2 8 

In order to construct Row 3 beginning with s(3, 1) = 3, note that s(3, 2) can-
not be 4 or 5, as these appear in Row 1; nor 6, as then s(3, 3) = 9, already in 
Row 1; nor 7 nor 8 nor 9 nor 10 nor 11. These observations illustrate the 
problem: once q rows of a (prospective) Stolarsky array have been constructed, 
can Row q + 1 always be constructed*! We shall show that the answer is yes, and 
that, actually, Row q + 1 can be constructed in infinitely many ways. 

The symbols Si, s^ ••• will always represent a sequence of the following 
kind: 

(i) Si > 0, s2 > 0, and sn = asn_1 + bsn_2 for n > 3, 
where a and b are integers satisfying 1 < b < a. Let 

5 
10 

9 
18 

12 
28 

23 
46 

37 
74 

60 
120 

+ /a2 + 4£ 
and a, 

so that a > l , - 1 < 3 < 0 , and the identities az = aa + and a$ + b yield 
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(ii) sn = a-^a71 + 2?x3n for all n > 1, where 

~ - l Z and b, - Z l 
1 a(3 - a) 1 3(3 - a ) ' 

Similarly, the symbols £]_, i2, ••• will always mean a sequence given by 

£„ = atn-i + btn-2 = a>2®n + hi$n> 
where 

ti3 - to , to - £ia 
a = _^ £ a n d £o = — — , and ti > 0, to > 0. 

z a ( 3 - a) z 3(3 - a) i z 

Lemma 1.1: There e x i s t s a p o s i t i v e i n t e g e r N such t h a t s n + i = [asn + %] for 
every n > N. The l e a s t such N i s 2 + [ l o g a / ^ 2 | a s i - s 2 | ] . 

Proof: a s n = a ( a x a n + Z?x3n) = alan + l + £ x 3 n + 1 + a ^ S * - b^n + l 

so t h a t sn + i = [asn + %] i f and only i f 0 < Z?j3n(a - 3) + % < 1. This i s e q u i -
v a l e n t to - 1 < 2 ( a s i - s 2 ) 3 n _ 1 < ! ' hence to 

<b\n~l , i , l (I)" 2 |aS]_ - s 2 I 
and hence equivalent to n - 1 > loga/fc2|aSi - s2|> as required. 

Lemma 1.2: Suppose S]_ is not among t\9 t2, . .., and t\ is not among s\9 s2, 
... . Let 

M = 2 + [loga/b 2|asi - s2|] and N = 2 + [loga/2? 2 | atx - £2 | ] . 

If m > M, n > N, and sm < tn < 8m+1, then sm < tn < sm+l < tn + 1 < sm + 2 < ... . 

Proof: Suppose m > M and n > N. By Lemma 1.1, s^+i = [oiSi + %] for every i > m 
and £•£ + ]_ = [at^ + %] for every i > n. So, if t„ = Sm+1» then 

[a£„ + %] = [as m + 1 + % ] , 

so that tn + 1 = sm + 2- But then a£n + btn„i = asm+]_ + bsm, so that £n_i = s . 
But then at„_i + £t n_ 2 ~ asm + bsm-l> s o that tn_2 = SOT-i- Continuing, we even-
tually reach t\ = Sp for some p > 1 or else tq = S\ for some <? > 1, contrary to 
the hypothesis. 

Now that we have sm < tn and tn < sm + i, the remaining inequalities in the 
asserted chain follow by induction: Sp < tn implies 

[asp + %] < [atq + % ] , 

so that sp + i < tq + i, and tq < sr similarly implies tq + i < sr + ]_. 

Lemma 1.3: Suppose s l 5 s 2 5 and t^ are given and t]_ > S]_. For /c > 1, let tj 
denote the sequence t \ , t2 = t\ + k, t$ = at2 + ^^i, ... . Then there exist 
positive integers C and K9 both independent of k, such that if k > K and /7? > 
C[logak] and n is the index satisfying sm < t^) < s m + 1 , then 

< f(k) Ak) 
sm < vn < s

m + l ^2 + 1 < S ^ + l < ••• -

Proof: Let 

M = 2 + [loga/fc2|as1 - s2|] and N(k) = 2 + [loga/z,2|a^ - ̂ x - k\]. 
Let p(/c) be the index satisfying 

SP(k) < tN(k) ~ Sp(k)+l' 
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C l e a r l y , t h e r e i s a p o s i t i v e i n t e g e r Z x so l a r g e t h a t p(k) > M for a l l k > Z x . 
For such k, Lemma 1.2 g ives 

(1) sp(k) + h < t(Hk) + h K sP(k) + i+h f o r a 1 1 h - °-
Also , fo r a l l fc > Z x , 

a x a P ^ + fc^PW = S p a ) < t™k) = a 2 a ^ } + b2&»™ < ( a 2 + | 2 ? 2 | ) a ^ > . 
Let A, S, iv2 be p o s i t i v e i n t e g e r s , wi th K2 > Ki, a l l independent of k9 s a t i s f y -
ing a2 + \b2\ < A + Bk for a l l k > K2; t o see t h a t such ^ and B e x i s t , observe 

£l& - ( t x + /c) t i + fe - t x a 
a 9 = • and b9 = „ 

a ( 3 - a ) ~ 3(3 - a) 
For a l l such k9 

aiap{k) < (A + Bk)aNik) + 6(fc), where Q(k) = 1 + |&13P ( k ) |« 
Then 

a x a p a ) < S(fe) + (A + £ f c ) a 2 + l o g a / * 2 K - V k l , 

so t h a t L 

a 1 a p ( k ) < g(/c) + a2G4 + Bk)(2\atl - t1 - k\)1 ~ lo^b . 

Applying loga to both sides and the inequality loga(x + y) < logax + logay to 
the resulting right-hand side yields 

p(k) + logaa1 < logaQ(k) + 2 + loga04 + Bk) 

+ 1 - lo^g loga(2latl - *1 - fc|)-

Now llmj^^^Qik) = 1, so that there must exist positive integers C and Z3, inde-
pendent of ks with Zo > î 23 such that 

p(k) + 1 < C[logak] for all A: > K3* 

For such /c, if 772 is any integer that exceeds 6* [log k] , then 777 = p(/c) + fo for 
some /z > 1. For n = N(k) + 77? - p(k) , the stated chain of inequalities follows 
from (1). 

Theorem: Let 5 = {s(x, y) : 1 < x < ̂ , 2/ > 1} be a Stolarsky pre-array. Sup-
pose t\ t S and t\ > max{s(x, 1): 1 < x < q}. Then there exist infinitely many 
numbers t2

 s u c n that no term of the sequence t \ , t 2 , £3 = cit2 + /-?£].? ••• lies 
in 5. 

Proof: Suppose, to the contrary, that there are at most finitely many numbers 
k > 1 for which the sequence tls t2 = t\ + fe, £3 = a^2 + ^ l ' ••• contains no 
element of S. Let kl be the greatest of these k. Let t^, t ^ \ . .. denote the 
(a 5 b ) -recurrence sequence whose first two terms are t\ and t2 - t\ + ki + k. 
Then, for every positive integer k, the sequence t ^ \ t ^ \ * . . contains a term 
of S. That is, there exist indices j(W5 x(k) , and z/(fc) for which 

,W (2) *)£ = s(a?(fc), i/(/c)), whe re J 00 
(3) 1 < x{k) < q. 
On the other hand, by Lemma 1*3, there exist constants C\, 6*2? . ..» £q and iC]_, 
K2, »».s -Kq* all independent of k, such that for x = 1, 2, ..., q5 if 

yx > cx[iogak] 
where k > Kx and j x is the index for which 

s(x, yx) < tjj < s(x9 yx + 1), 

then equation (2) cannot hold for any j(k) < j x . Accordingly, (2) implies 

1991] 3 4 1 



SECOND-ORDER STOLARSKY ARRAYS 

(4) 1 < y(k) < Cx(k)[log k] for a l l k > K = max{Zl5 Z2, . . . , Kq]. 

Now, since the index x(k) in (2) is < q, we have s(x(k), 1) < t^ for a l l k, by 
hypothesis, and also s(x(k), 2) < t^ r o r a H ^ larger than some K*. Therefore, 
in equation (2), j(k) < y(k)9 so that 

(5) 1 < j(k) < Cx(k)[logak] for a l l k > K*. 

Let m(k) = [logak] max{C1, C2, . . . , Cq}. Then, for a l l k > IK = max{Z, Z*}, 
we have 

1 < x(k) < q, 1 < y(k) < m(k), 1 < j(/c) < 777(A:). 

Let A:f be any integer large enough that kr > q[m(K + kr)]2. Then, for k = 1, 
2, 3, ..., kr, we have 

1 < x(IK + k) < q, 1 < z/(IK + fe) < m(K + kf), 1 < j(IK + k) < m(K + k ') . 

Now, the total number of distinct triples (x, z/, j) that can satisfy three 
such inequalities is the product q[m(K + kr)] , but we have more than this 
number. Therefore, there exist distinct ku and kv for which 

x(ku) = x(kv), y(ku) = z/(fey), «/(feM) = j(?cy). 

This means that the sequences 
, Aku) Aku) , , AK) Akv) 
vY, v2 , ..., Kj(K)9 ... ana vv v2 , ..., ^•(^)J -•-

have identical first terms and identical j(ku)th terms. But this implies 
t(K) = t(kv) 

contrary to ku * kv. This contradiction finishes the proof. 

Conclusion 

An obvious consequence of the theorem is that any Stolarsky pre-array can 
be extended to a Stolarsky array. For each new row, one need only choose t\ to 
be the least positive integer satisfying the hypothesis of the theorem; that 
is, the least not yet present in the array being constructed. This choice 
ensures that every positive integer must occur in the constructed Stolarsky 
array. 
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