GENERALIZED MULTIVARIATE FIBONACCI POLYNOMIALS OF ORDER K AND THE MULTIVARIATE NEGATIVE BINOMIAL DISTRIBUTIONS OF THE SAME ORDER

Andreas N. Philippou and Demetris L. Antzoulakos*
University of Patras, Patras, Greece (Submitted November 1989)
\section*{1. Introduction and Summary}

In a recent paper, Philippou and Antzoulakos [4] introduced and studied the sequence of multivariate Fibonacci polynomials of order k and related them to the multiparameter negative binomial distribution of the same order of Philippou [3], in order to derive a recurrence relation for calculating its probabilities. This sequence of polynomials includes, as a special case, both the sequence of Fibonacci polynomials of order k and the sequence of Fibonaccitype polynomials of the same order of Philippou, Georghiou, and Philippou [9] and [10], respectively.

In this paper, we introduce a generalization of the sequence of multivariate Fibonacci polynomials of order k (see Definition 2.1), and we derive an expansion in terms of the multinomial coefficients and a recurrence for the general term of the ($r-1$)-fold convolution of this sequence with itself (see Theorems 2.1 and 2.2). Next, we relate these polynomials to the multivariate negative binomial distribution of order k of Philippou, Antzoulakos, and Tripsiannis [8], and we derive a useful recurrence relation for calculating its probabilities (see Proposition 3.1 and Theorem 3.1). Analogous recurrences follow directly for the type I, type II, and extended multivariate negative binomial distributions of order k of [8] (see Corollaries 3.1-3.3).

The present paper generalizes results on multivariate Fibonacci polynomials of order k (see Remark 2.1) and Fibonacci-type polynomials of the same order (see Remark 2.2). At the same time, several results of Aki [1], Philippou and Georghiou [6], and Philippou and Antzoulakos [4] on recurrences for the probabilities of univariate geometric and negative binomial distributions of order k are generalized to the multivariate case.

Unless otherwise stated, in this paper k, m, and r are fixed positive integers, $n_{i}(1 \leq i \leq m)$ are integers, $n_{i j}(1 \leq i \leq m$ and $1 \leq j \leq k)$ are nonnegative integers as specified, $x_{i j}(1 \leq i \leq m$ and $1 \leq j \leq k)$ are real numbers in the interval ($0, \infty$), $\underline{1}$ denotes the m-dimensional vector with a one in every position, and $\dot{j}_{i}(\overline{1} \leq i \leq m$ and $l \leq j \leq k)$ denotes the m-dimensional vector with a j in the i th position and zeros elsewhere. Also, whenever sums and products are taken over i and j, ranging, respectively, from 1 to m and from 1 to k, we shall omit these limits for notational simplicity.

2. Generalized Multivariate Fibonacci Polynomials
 of Order k and Convolutions

In this section, we introduce the sequence of generalized multivariate Fibonacci polynomials of order k, to be denoted by

$$
H_{\underline{n}}^{(k)}\left(\underline{x}_{1}, \ldots, \underline{x}_{m}\right),
$$

[^0]along with the $(r-1)$-fold convolution of $H_{\underline{n}}^{(k)}\left(\underline{x}_{1}, \ldots, \underline{x}_{m}\right)$ with itself, to be denoted by
$$
H_{\underline{n}, p}^{(k)}\left(\underline{x}_{1}, \ldots, \underline{x}_{m}\right),
$$
and we derive a multinomial expansion and a recurrence for the $\underline{n}^{\text {th }}$ term of $H_{n}^{(k)}\left(\underline{x}_{1}, \ldots, x_{m}\right)$. In some instances, we shall use the notation $\bar{H}_{\underline{n}}^{(k)}$ and $H_{\underline{n}}^{(k)}, r$ instead of $\left.H_{\underline{n}}^{(k)}{ }^{-m} \underline{x}_{1}, \ldots, \underline{x}_{m}\right)$ and $\left.H_{\underline{n}}^{(k)}{ }_{r}^{\left(\underline{x}_{1}\right.}, \ldots, \underline{x}_{m}\right)$, respectively.
Definition 2.1: The sequence of polynomials $H_{\underline{n}}^{(k)}\left(\underline{x}, \ldots, \underline{x}_{m}\right)$ is said to be the sequence of generalized multivariate Fibonacci polynomials of order k, if
\[

H_{n}^{(k)}\left(x_{1}, ···, x_{m}\right)=\left\{$$
\begin{array}{l}
0, \quad \text { if some } n_{i} \leq 0(1 \leq i \leq m), \\
1, \quad \text { if } \underline{n}=\underline{1}, \\
\sum_{i} \sum_{j} x_{i j} \underline{\underline{n}}_{\underline{n}-\underline{j}_{i}}^{(\underline{k})}\left(\underline{x}_{1}, \ldots, \underline{x}_{m}\right), \text { elsewhere },
\end{array}
$$\right.
\]

where $\underline{n}=\left(n_{1}, \ldots, n_{m}\right)$ and $\underline{x}_{i}=\left(x_{i 1}, \ldots, x_{i k}\right), i=1, \ldots, m$.
For $m=1, n_{1}=n(\geq 0)$ and $\underline{x}_{1}=\underline{x}, H_{\underline{n}}^{(k)}\left(\underline{x}_{1}, \ldots, \underline{x}_{m}\right)$ reduces to $H_{n}^{(k)}(\underline{x})$, the sequence of multivariate Fibonacci- polynomials of order k of Philippou and Antzoulakos [4].
Lemma 2.1: Let $H_{n}^{(k)}\left(\underline{x}_{1}, \ldots, \underline{x}_{m}\right)$ be the sequence of generalized multivariate Fibonacci polynomials of order \bar{k}, and denote its generating function by

$$
g_{k}\left(t_{1}, \ldots, t_{m} ; \underline{x}_{1}, \ldots, \underline{x}_{m}\right)
$$

Then, for $0<x_{i j}<1(1 \leq i \leq m$ and $1 \leq j \leq k)$ and $\sum_{i} \sum_{j} x_{i j}<1$, we have

$$
g_{k}\left(t_{1}, \ldots, t_{m} ; \underline{x}_{1}, \ldots, x_{m}\right)=\frac{t_{1} \ldots t_{m}}{1-\sum_{i} \Sigma_{j} x_{i j} t_{i}^{j}}, \quad\left|t_{i}\right|<1, \quad 1=1, \ldots, m .
$$

Proof: It can be shown by induction on n_{1}, \ldots, n_{m} that $0<x_{i j}<1$ ($1 \leq i \leq m$ and $1 \leq j \leq k$) and $\sum_{i} \sum_{j} x_{i j}<1$ imply $0 \leq H_{\underline{n}}^{(k)} \leq 1$, which shows the convergence of $g_{k}\left(t_{1}, \ldots, t_{m} ; \underline{x}_{1}, \ldots, \underline{x}_{m}\right)$ for at least $\left|t_{i}\right|<1$, since for these t_{i}

$$
\begin{aligned}
g_{k}\left(t_{1}, \ldots, t_{m} ; \underline{x}_{1}, \ldots, \underline{x}_{m}\right) & \leq \sum_{n_{1}=1}^{\infty} \ldots \sum_{n_{m}=1}^{\infty} t_{1}^{n_{1}} \ldots t_{m}^{n_{m}} \\
& =\prod_{i} t_{i}\left(1-t_{i}\right)^{-1}
\end{aligned}
$$

Next, using Definition 2.1, we have

$$
\begin{aligned}
& g_{k}\left(t_{1}, \ldots, t_{m} ; \underline{x}_{1}, \ldots, \underline{x_{m}}\right) \\
& =t_{1} \ldots t_{m}+\sum_{\substack{n_{1}=1 \\
n_{1}+\cdots+n_{m} \geq m+1}}^{\infty} \ldots \sum_{n_{m}=1}^{\infty} t_{1}^{n_{1}} \ldots t_{m}^{n_{m}} H_{\underline{n}}^{(k)} \\
& =t_{1} \ldots t_{m}+\sum_{\substack{n_{1}=1 \\
n_{1}+\cdots+n_{m} \geq m+1}}^{\infty} \ldots \sum_{n_{m}=1}^{\infty} t_{1}^{n_{1}} \ldots t_{m}^{n_{m}} \sum_{i} \sum_{j} x_{i j} H_{\underline{n}-\underline{j}_{i}}^{(k)} \\
& =t_{1} \ldots t_{m}+\sum_{i} \sum_{j} x_{i j} \sum_{n_{1}=1}^{\infty} \ldots \sum_{n_{m}=1}^{\infty} t_{1}^{n_{1}} \ldots t_{i}^{n_{i}+j} \ldots t_{m}^{n_{m}} H_{\underline{n}}^{(k)} \\
& =t_{1} \ldots t_{m}+\sum_{i} \sum_{j} x_{i j} t_{i}^{j} g_{k}\left(t_{1}, \ldots, t_{m} ; \underline{x}_{1}, \ldots, \underline{x}_{m}\right),
\end{aligned}
$$

from which the lemma follows.
 $H_{\underline{n}}^{(k)}\left(\underline{x}_{1}, \ldots, \underline{x}_{m}\right)$ with itself, i.e., $H_{\underline{n}, r}^{(\underline{k})}=0$ if some $n_{i} \leq 0(1 \leq i \leq m)$, and for $n_{i} \geq 1(1 \leq i \leq m)$

$$
H_{\underline{n}, r}^{(k)}= \begin{cases}H_{\underline{n}}^{(k)}, & \text { if } r=1, \tag{2.1}\\ \sum_{\underline{c}_{1}=1}^{n_{1}} & \cdots \sum_{\underline{c}_{m}=1}^{n_{m}} H_{\underline{c}, r-1}^{(k)} H_{\underline{n}+\underline{1}-\underline{c}}^{(k)}, \text { if } r \geq 2,\end{cases}
$$

where $\underline{c}=\left(c_{1}, \ldots, c_{m}\right)$.
As a consequence of (2.1) and in view of Lemma 2.1 , we have

$$
\begin{equation*}
\sum_{n_{1}=0}^{\infty} \ldots \sum_{n_{m}=0}^{\infty} t_{1}^{n_{1}} \ldots t_{m}^{n_{m}} H_{\underline{n}+\underline{1}, r}^{(k)}\left(\underline{x}_{1}, \ldots, \underline{x}_{m}\right)=\left(1-\sum_{i} \sum_{j} x_{i j} t_{i}^{j}\right)^{-r} \tag{2.2}
\end{equation*}
$$

Expanding (2.2) about $t_{1}=\cdots=t_{m}=0$ and using procedures similar to those of [5] and [8], we readily find the following closed formula for $H_{\underline{n}, r}^{(k)}$, in terms of the multinomial coefficients.
Theorem 2.1: Let $H_{\underline{n}, r}^{(k)}\left(\underline{x}_{1}, \ldots, x_{m}\right)$ be the $(r-1)$-fold convolution of the sequence $H_{\underline{n}}^{(k)}\left(\underline{x}_{1}, \ldots, \underline{x}_{m}\right)$ with itsel $\bar{l} f$. Then

$$
\begin{array}{r}
H_{\underline{n}+\underline{1}, r}^{(k)}\left(\underline{x}_{1}, \ldots, \underline{x}_{m}\right)=\sum_{\sum_{j} j n_{i j}=n_{i}}\binom{n_{11}+\ldots+n_{m k}+r-1}{n_{11}, \ldots, n_{m k}, r-1} \Pi_{i} \Pi_{j} x_{i j}^{n_{i, j}} \\
n_{i}=0,1, \ldots(1 \leq i \leq m)
\end{array}
$$

Proof: Let $\left|t_{i}\right|<1(1 \leq i \leq m), 0<x_{i j}<1(1 \leq i \leq m$ and $1 \leq j \leq k)$, and let $\sum_{i} \sum_{j} x_{i j}<1$. Then

$$
\begin{aligned}
& \sum_{n_{1}=0}^{\infty} \ldots \sum_{n_{m}=0}^{\infty} t_{1}^{n_{1}} \ldots t_{m}^{n_{m}} H_{\underline{n}+\underline{1}, r}\left(\underline{x}_{1}, \ldots, \underline{x}_{m}\right) \\
& =\left(1-\sum_{i} \sum_{j} x_{i j} t_{i}^{j}\right)^{-r}, \quad \text { by (2.2), } \\
& =\sum_{n=0}^{\infty}\binom{n+r-1}{n}\left(\sum_{i} \sum_{j} x_{i j} t_{i}^{j}\right)^{n}, \quad \text { since }\left|\sum_{i} \sum_{j} x_{i j} t_{i}^{j}\right|<1, \\
& =\sum_{n=0}^{\infty}\left(\begin{array}{c}
n+r-1 \\
n
\end{array} \sum_{\sum_{i} \sum_{j} n_{i j}=n}\left(\begin{array}{c}
n \\
n_{1 l}, \\
\ldots, n_{m k}
\end{array}\right) \Pi_{i} \Pi_{j}\left(x_{i j} t_{i}^{j}\right)^{n_{i j}},\right. \\
& =\sum_{n_{1}=0}^{\infty} \cdots \sum_{n_{m}=0}^{\infty} \sum_{j_{j} n_{i j}=n_{i}}\binom{n_{11}+\cdots+n_{m k}+r-1}{n_{1 l}, \ldots, n_{m k}, r-1} \Pi_{i} \Pi_{j}\left(x_{i, j} t_{i}^{j}\right)^{n_{i j}} \\
& =\sum_{n_{1}=0}^{\infty} \ldots \sum_{n_{m}=0}^{\infty} t_{1}^{n_{1}} \ldots t_{m}^{n_{m}} \sum_{\substack{\sum_{j} \\
i=1, \ldots, m \\
n_{i, j}=n_{i}}}\binom{n_{11}+\ldots+n_{m k}+r-1}{n_{11}, \ldots, n_{m k}, r-1} \Pi_{i} \Pi_{j} x_{i j}^{n_{i j}},
\end{aligned}
$$

by replacing n_{i} by $n_{i}-\sum_{j}(j-1) n_{i j}(1 \leq i \leq m)$. The theorem follows.
We proceed next to show that $H_{\underline{n}, r}^{(k)}$ satisfies the following linear recurrence with variable coefficients, using procedures similar to those of [4] and [6].
Theorem 2.2: Let $H_{n}^{(k)}{ }_{r}\left(\underline{x}_{1}, \ldots, x_{m}\right)$ be the $(r-1)$-fold convolution of the sequence $H_{\underline{n}}^{(k)}\left(\underline{x}_{1}, \ldots, \underline{x}_{m}\right)$ with itself. Then

$$
\begin{aligned}
& H_{\underline{n}, r}^{(k)}=0 \text {, if some } n_{i} \leq 0(1 \leq i \leq m), H_{\underline{1}, r}^{(k)}=1 \text {, } \\
& H_{\underline{n}+\underline{1}, r}^{(k)}=\sum_{i} \sum_{j} x_{i j} H_{\underline{n}+\underline{1}-\underline{j}_{i}, r}^{(k)}+\frac{r-1}{n_{s}} \sum_{j} j x_{s j} H_{\underline{n}+\underline{1}-\underline{j}_{s}, r}^{(k)}, \\
& \text { if } n_{i} \geq 0 \text { and some } n_{s} \geq 1(1 \leq i, s \leq m) \text {. }
\end{aligned}
$$

and
[Nov.

Proof: From the definition of $H_{\underline{n},{ }_{p}}^{(k)}$, we have
(2.3) $H_{\underline{n}, r}^{(k)}=0$, if some $n_{i} \leq 0(1 \leq i \leq m)$ and $H_{\underline{1}, r}^{(k)}=1$.

Now, using (2.2) twice, we have
(2.4) $H_{\underline{n} \underline{\underline{1}}, r}^{(k)}=H_{\underline{n}+\underline{1}, r+1}^{(k)}-\sum_{i} \sum_{j} x_{i j} H_{\underline{n}+\underline{1}-\underline{j}_{i}}^{(k)}, r+1, n_{i} \geq 0(1 \leq i \leq m)$,
since the generating function of the right-hand side reduces to that of $H_{n}^{(k)}$ Next, differentiating both sides of (2.2) with respect to $t_{s}(1 \leq s \leq m)$, we get
(2.5) $\quad n_{i s} H_{\underline{n}+\underline{1}, r}^{(k)}=r \sum_{j} j x_{s j} H_{\underline{n}+\underline{1}-\underline{j}_{s}}^{(k)}, r+1, \quad n_{i} \geq 0$ and $n_{s} \geq 1(1 \leq i \neq s \leq m)$.

Combining (2.4) and (2.5), we obtain

$$
\begin{aligned}
& H_{\underline{n}+\underline{1}, r}^{(k)}=\sum_{i} \sum_{j} x_{i j} H_{\underline{n}+\underline{1}-\underline{j}_{i}}^{(k)}+\frac{r-1}{n_{s}} \sum_{j} j x_{s j \underline{j}} H_{\underline{n}+\underline{1}-\underline{\underline{j}}_{s}, r}^{(k)}, \\
& \\
& \text { if } n_{i} \geq 0 \text { and some } n_{s} \geq 1(1 \leq i, s \leq m),
\end{aligned}
$$

by means of (2.1), which along with (2.3) establishes the theorem.
Remark 2.1: For $m=1, n_{1}=n$, and $\underline{x}_{1}=\underline{x}=\left(x_{1}, \ldots, x_{k}\right)$, Theorems 2.1 and 2.2 reduce to the main results of Philippou and Antzoulakos [4] on multivariate Fibonacci polynomials of order k (see Theorems 2.2 and 2.3), namely,

$$
\begin{equation*}
H_{n+1, r}^{(k)}(x)=\sum_{\sum_{j} j n_{j}=n}\binom{n_{1}+\cdots+n_{k}+r-1}{n_{1}, \ldots, n_{k}, r-1} \Pi_{j} x_{j}^{n_{j}}, n \geq 0 \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{n+1, r}^{(k)}(\underline{x})=\sum_{j} \frac{x_{j}}{n}[n+j(r-1)] H_{n+1-j, r}^{(k)}(\underline{x}), n \geq 1 \tag{2.7}
\end{equation*}
$$

Remark 2.2: For $m=1, n_{1}=n$, and $x_{1}=(x, \ldots, x)$, Theorems 2.1 and 2.2 reduce to Theorems 2.1(a) and 2.2 of Philippou and Georghiou [6], respectively, since for these values

$$
H_{n_{1}, r}^{(k)}\left(\underline{x}_{1}\right)=F_{n, r}^{(k)}(x)
$$

where $F_{n, r}^{(k)}(x)$ denotes the $(r-1)$-fold convolution of the sequence of Fibonaccitype polynomials of order k with itself.

We note in ending this section that the sequence $F_{\underline{n}}^{(k)}$ defined by

$$
F_{\underline{n}}^{(k)}=\left\{\begin{array}{l}
0, \quad \text { if some } n_{i} \leq 0(1 \leq i \leq m) \\
1, \quad \text { if } \underline{n}=\underline{1}, \\
\sum_{i} \sum_{j} F_{\underline{n}-\underline{\underline{j}}_{i}}^{(k)}, \text { elsewhere }
\end{array}\right.
$$

may be called the multiple Fibonacci sequence of order k, since for $m=1$ and $n_{1}=n(\geq 0)$ it reduces to $F_{n}^{(k)}$, the Fibonacci sequence of order k (see, e.g., Philippou and Muwafi [7]). It may be noted that

$$
\begin{equation*}
\underline{F}_{\underline{n}+\underline{1}}^{(k)}=\sum_{\sum_{i j} j n_{i j}=n_{i}}\binom{n_{11}+\ldots+n_{m k}}{n_{11}, \ldots, n_{m k}}, n_{i}=0,1, \ldots(1 \leq i \leq m) . \tag{2.8}
\end{equation*}
$$

which follows from Theorem 2.1 for $r=1$ and $x_{i j}=1(1 \leq i \leq m$ and $1 \leq j \leq k)$.

3. Recurrence Relations for the Multivariate Negative
 Binomial Distributions of Order k

In this section, we employ Theorems 2.1 and 2.2 to derive a recurrence relation for calculating the probabilities of the following multivariate negative binomial distribution of order k of Philippou, Antzoulakos, and Tripsiannis [8].
1991]

Definition 3.1: A random vector $N=\left(N_{1}, \ldots, N_{m}\right)$ is said to have the multivariate negative binomial distribution of order k with parameters $r, q_{11}, \ldots, q_{m k}$ $\left(r>0,0<q<1\right.$ for $1 \leq i \leq m$ and $1 \leq j \leq k$, and $\left.q_{11}+\cdots+q_{i j}<1\right)$, to be denoted by $\operatorname{MNB}_{k}\left(r ; q_{11}, \ldots, q_{m k}\right)$, if

$$
\begin{aligned}
& P\left(N_{1}=n_{1}, \ldots, N_{m}=n_{m}\right) \\
& =p^{r} \sum_{j} \sum_{j n_{i j}=n_{i}}\binom{n_{11}+\ldots+n_{m k}+r-1}{n_{11}, \ldots, n_{m k}, r-1} \Pi_{i} \Pi_{j} q_{i j}^{n_{i j}},
\end{aligned}
$$

$$
n_{i}=0,1, \ldots(1 \leq i \leq m)
$$

where $p=1-q_{11}-\cdots-q_{m k}$.
Analogous recurrences are also given for the type I, type II, and extended multivariate negative binomial distributions of order k of [8], denoted by

$$
\begin{aligned}
& \overline{\operatorname{MNB}}_{k, I}\left(r ; Q_{1}, \ldots, Q_{m}\right), \operatorname{MNB}_{k, \text { II }}\left(r ; Q_{1}, \ldots, Q_{m}\right), \text { and } \\
& \overline{\operatorname{MENB}}_{k}\left(r ; q_{11}, \ldots, q_{m k}\right) .
\end{aligned}
$$

These distributions result by applying to the parameters of $\operatorname{MNB}_{k}\left(r ; q_{11}, \ldots\right.$, $q_{m k}$) the following transformations, respectively:
(a) $q_{i j}=P^{j-1} Q_{i}\left(0<Q_{i}<1\right.$ for $1 \leq i \leq m, \quad \sum_{i} Q_{i}<1$ and $\left.P=1-\sum_{i} Q_{i}\right)$;
(b) $q_{i j}=Q_{i} / k\left(0<Q_{i}<1\right.$ for $1 \leq i \leq m, \quad \sum_{i} Q_{i}<1$ and $\left.P=1-\sum_{i} Q_{i}\right)$;
(c) $q_{i j}=P_{1} P_{2} \ldots P_{j-1} Q_{i j}\left(P_{0}=1,0<Q_{i j}<1\right.$ for $1 \leq i \leq m$ and $1 \leq j \leq k$,

$$
\left.\sum_{i} Q_{i j}<1 \text { and } P_{j}=1-\sum_{i} Q_{i j} \text { for } 1 \leq j \leq k\right) .
$$

We note first the following proposition that relates the multivariate negative binomial distribution of order k to the generalized multivariate Fibonacci polynomials of the same order.
Proposition 3.1: Let $\underline{N}=\left(N_{1}, \ldots, N_{m}\right)$ be a random vector distributed as

$$
\operatorname{MNB}_{k}\left(x ; q_{11}, \ldots, q_{m k}\right)
$$

and let $H_{\underline{n}, r}^{(k)}$ be the $(r-1)$-fold convolution of the sequence $H_{\underline{n}}^{(k)}$ with itself. Then

$$
\begin{aligned}
P\left(N_{1}=n_{1}, \ldots, N_{m}=n_{m}\right)=p^{r_{\underline{n}+\underline{1}}}, r\left(\underline{q}_{1}, \ldots, \underline{q}_{m}\right),
\end{aligned} \quad \begin{aligned}
& n_{i}=0,1, \ldots, 1 \leq i \leq m,
\end{aligned}
$$

where $\underline{q}_{i}=\left(q_{i 1}, \ldots, q_{i k}\right), i=1, \ldots, m_{0}$
Proof: The proof is a direct consequence of Theorem 2.1 and Definition 3.1.
We proceed now to derive a recurrence relation for calculating the probabilities of $\operatorname{MNB}_{k}\left(r ; q_{11}, \ldots, q_{m k}\right)$.
Theorem 3.1: Let $\underline{N}=\left(N_{1}, \ldots, N_{m}\right)$ be a random vector distributed as

$$
\operatorname{MNB}_{k}\left(r ; q_{11}, \ldots, q_{m k}\right)
$$

and set

$$
P_{\underline{n}, r}=P\left(N_{1}=n_{1}, \ldots, N_{m}=n_{m}\right) .
$$

Then

Proof: If some $n_{i} \leq-1(1 \leq i \leq m),\left(N_{1}=n_{1}, \ldots, N_{m}=n_{m}\right)=\emptyset$, which implies $P_{\underline{n}, r}=P(\emptyset)=0$. If $n_{l}=\cdots=n_{m}=0$, Definition 3.1 gives $P_{\underline{n}, r}=p^{r}$. If $n_{i} \geq 0$ and some $n_{s} \geq 1(1 \leq i, s \leq m)$, we have

$$
\begin{aligned}
P_{\underline{n}, r}= & p^{r} H_{\underline{n}+\underline{1}, r}^{(k)}\left(\underline{q}_{1}, \ldots, \underline{q}_{m}\right), \text { by Proposition } 3.1, \\
= & p^{r}\left\{\sum_{i} \sum_{j} q_{i j} H_{\underline{n}+\underline{1}-\underline{j}_{i}}^{(k)}, r \underline{q}_{1}, \ldots, \underline{q}_{m}\right) \\
& \left.\left.+\frac{r-1}{n_{s}} \sum_{j} j q_{s j} H_{\underline{n}+\underline{1}-\underline{j}_{s}}^{(k)}, r \underline{q}_{1}, \ldots, \underline{q}_{m}\right)\right\}, \text { by Theorem } 2.2,
\end{aligned}
$$

$$
=\sum_{i} \sum_{j} q_{i j}{\underline{\underline{n}} \underline{\underline{n}} \underline{\underline{j}}_{i}, r}+\frac{r-1}{n_{s}} \sum_{j} j q_{s j} P_{\underline{n}-\underline{j}_{s}, r}, \text { by Proposition 3.1. }
$$

Using the transformations (a), (b), and (c), respectively, Theorem 3.1 now reduces to the following corollaries.
Corollary 3.1: Let $\underline{N}=\left(N_{1}, \ldots, N_{m}\right)$ be a random vector distributed as

$$
\overline{\operatorname{MNB}}_{k, \mathrm{I}}\left(r ; q_{1}, \ldots, q_{m}\right),
$$

and set

$$
P_{\underline{n}, r}=P\left(N_{1}=n_{1}, \ldots, N_{m}=n_{m}\right) .
$$

Then

$$
\underline{P}_{\underline{n}, r}=\left\{\begin{array}{l}
0, \quad \text { if some } n_{i} \leq-1(1 \leq i \leq m), \\
p^{k r}, \quad \text { if } n_{1}=\cdots=n_{m}=0, \\
\sum_{i} \sum_{j} p^{j-1} q_{i} P_{\underline{n}-\underline{j}_{i}}, r+\frac{p-1}{n_{s}} \sum_{j} j p^{j-1} q_{s} P_{\underline{n}-\underline{j}_{s}, r}, \\
\quad \text { if } n_{i} \geq 0 \text { and some } n_{s} \geq 1(1 \leq i, s \leq m) .
\end{array}\right.
$$

Corollary 3.2: Let $\underline{N}=\left(N_{1}, \ldots, N_{m}\right)$ be a random vector distributed as

$$
\mathrm{MNB}_{k, \text { II }}\left(r ; q_{1}, \ldots, q_{m}\right),
$$

and set

$$
P_{\underline{n}, r}=P\left(N_{1}=n_{1}, \ldots, N_{m}=n_{m}\right) .
$$

Then

$$
P_{\underline{n}, r}=\left\{\begin{array}{l}
0, \quad \text { if some } n_{i} \leq-1(1 \leq i \leq m), \\
p^{r}, \quad \text { if } n_{1}=\cdots=n_{m}=0, \\
\sum_{i} \sum_{j} \frac{q_{i}}{k} P_{\underline{n}-\underline{j}_{i}, r}+\frac{r-1}{n_{s}} \sum_{j} j \frac{q_{s}}{k} P_{\underline{n}-\underline{j}_{s}, r}, \\
\quad \text { if } n_{i} \geq 0 \text { and some } n_{s} \geq 1(1 \leq i, s \leq m) .
\end{array}\right.
$$

Corollary 3.3: Let $\underline{N}=\left(N_{1}, \ldots, N_{m}\right)$ be a random vector distributed as

$$
\overline{\mathrm{MENB}}_{k}\left(r ; q_{11}, \ldots, q_{m k}\right)
$$

and set

$$
P_{\underline{n}, r}=P\left(N_{1}=n_{1}, \ldots, N_{m}=n_{m}\right) .
$$

Then

$$
P_{\underline{n}, r}=\left\{\begin{array}{l}
0, \quad \text { if some } n_{i} \leq-1(1 \leq i \leq m), \\
\left(p_{1} \cdots p_{k}\right)^{r}, \quad \text { if } n_{1}=\cdots=n_{m}=0, \\
\sum_{i} \sum_{j} p_{1} \cdots p_{j-1} q_{i j} P_{\underline{n}-\underline{j}_{i}}, r+\frac{r-1}{n_{s}} \sum_{j} p_{1} \cdots p_{j-1} q_{s j} P_{\underline{n}-\underline{j}_{s}}, r
\end{array},\right.
$$

For $m=1$, Theorem 3.1 and Corollaries 3.1-3.3 reduce to known recurrences concerning respective univariate negative binomial distributions of order k (see [4] and [6]). For $k=1$, Theorem 3.1 (or any one of Corollaries 3.1-3.3) provides the following recurrence for the probabilities of $\operatorname{MNB}\left(r ; q_{1}, \ldots, q_{m}\right)$, the usual multivariate negative binomial distribution,

$$
P_{\underline{n}, r}=\left\{\begin{array}{l}
0, \quad \text { if some } n_{i} \leq-1(1 \leq i \leq m) \\
p^{r}, \quad \text { if } n_{1}=\cdots=n_{m}=0, \\
\sum_{i} q_{i} \underline{D}_{\underline{n}-1_{i}}, r+\frac{r-1}{n_{s}} q_{s} P_{\underline{n}-1_{s}, r}, \\
\quad \text { if } n_{i} \geq 0 \text { and some } n_{s} \geq 1(1 \leq i, s \leq m),
\end{array}\right.
$$

which does not seem to have been noticed before.
Remark 3.1:* For $r=1$, Theorem 3.1 and Corollaries 3.1-3.3 provide recurrences for the probabilities of respective multivariate geometric distributions of order k of [8], defined by

$$
\begin{aligned}
& \operatorname{MG}_{k}\left(q_{11}, \ldots, q_{m k}\right)=\operatorname{MNB}_{k}\left(1 ; q_{11}, \ldots, q_{m k}\right) \text {, } \\
& \overline{\mathrm{MG}}_{k, \mathrm{I}}\left(q_{1}, \ldots, q_{m}\right)=\overline{\mathrm{MNB}}_{k, \mathrm{I}}\left(1 ; q_{1}, \ldots, q_{m}\right) \text {, } \\
& \operatorname{MG}_{k, I I}\left(q_{1}, \ldots, q_{m}\right)=\operatorname{MNB}_{k, I I}\left(1 ; q_{1}, \ldots, q_{m}\right) \text {, } \\
& \text { and } \quad \overline{\operatorname{MEG}}_{k}\left(q_{11}, \ldots, q_{m k}\right)=\overline{\operatorname{MENB}}\left(1 ; q_{11}, \ldots, q_{m k}\right) \text {. }
\end{aligned}
$$

The resulting recurrence for $\overline{\operatorname{MEG}}_{k}\left(q_{11}, \ldots, q_{m k}\right)$ has also been obtained in [5], via a different method.

We note in ending this paper that another derivation of Theorem 3.l, without employing the sequence of generalized multivariate Fibonacci polynomials of order k, has been obtained by Antzoulakos and Philippou (see [2]).

References

1. S. Aki. "Discrete Distributions of Order k on a Binary Sequence." Annals of the Institute of Statistical Mathematics 37A (1985):205-24.
2. D. L. Antzoulakos \& A. N. Philippou. "A Note on the Multivariate Negative Binomial Distributions of Order k." Communications in Statistics 20 (1991).
3. A. N. Philippou. "On Multiparameter Distributions of Order k." Annals of the Institute of Statistical mathematics 40A (1988):467-75.
4. A. N. Philippou \& D. L. Antzoulakos. "Multivariate Fibonacci Polynomials of Order k and the Multiparameter Negative Binomial Distribution of the Same Order." Applications of Fibonacci Numbers, Vol. 3: Proceedings of the Third Intemational Conference on Fibonacci Numbers and Their Applications (Piza, 1988). Ed. G. E. Bergum, A. N. Philippou, \& A. F. Horadam. Dordrecht: Kluwer Acad. Publ., 1990, pp. 273-79.
5. A. N. Philippou \& D. L. Antzoulakos. "Multivariate Distributions of Order k on a Generalized Sequence." Statistics \& Probability Letters 9 (1990): 453-63.
6. A. N. Philippou \& C. Georghiou. "Convolutions of Fibonacci-Type Polynomials of Order k and the Negative Binomial Distributions of the Same Order." Eibonacci Quarterly 27.3 (1989):209-16.
7. A. N. Philippou \& A. A. Muwafi. "Waiting for the $k^{\text {th }}$ Consecutive Success and the Fibonacci Sequence of Order k." Fibonacci Quarterly 20.1 (1982): 28-32.
8. A. N. Philippou, D. L. Antzoulakos, \& G. A. Tripsiannis. "Multivariate Distributions of Order k." Statistics \& Probability Letters 7 (1988):20716.
9. A. N. Philippou, C. Georghiou, \& G. N. Philippou. "Fibonacci Polynomials of Order k, Multinomial Expansions, and Probability." International Journal of Mathematics and Mathematical Sciences 6.3(1983):545-50.
10. A. N. Philippou, C. Georghiou, \& G. N. Philippou. "Fibonacci-Type Polynomials of Order k with Probability Applications." Fibonacci Quarterly 23.2 (1985) : 100-05.

[^0]: *The research of this author was supported by the State Scholarship Foundation of Greece.

