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1. Introduction 

Consider a sequence defined by the condition 

(1.1) uQ = 0, ul = 1, un + 2 = aun + l + un3 n = 0, 1, 2, ... (a e Z). 

If a = 1, then un = Fn, that is, we get the sequence of Fibonacci numbers. If 
p is a fixed prime, we also consider the sequence wQ, u,, «„, ... defined by 
the same condition in ¥p , the finite field of p elements. Let /c = k(p) be the 
length of the shortest period of the sequence uQ, u-,, TL^* ••• • A Schinzel [1] 
has proved the following result. 

Theorem 1.1 (Schinzel) : Let S = S(p) be the set of frequencies with which dif-
ferent residues occur in the sequence un [0 < n < k(p)]. For p > 7, pja(a2+4) 
we have 

5 = (0, 1, 2} or {0, 1, 2, 3} if fc(p) 2 0 (mod 4), 
S = {0, 2, 4} if k(p) = 4 (mod 8), 
S = {0, 1, 2} or {0, 2, 3} or {0, 1, 2, 4} or {0, 2, 3, 4} 

if k(p) ~ 0 (mod 8). 
The purpose of this note is to show how this result can be extended, using 

the same method, with some minor modifications. Consider the sequence defined 
by the condition 

(1.2) vQ = 2, vY = a, vn+2 = avn+l + vn, n = 0, 1, 2, ... . 
If a = 1, then vn = Ln, that is, we get the sequence of Lucas numbers. Con-
sider also the sequence Vn,, V-,, V2, ... defined by the same condition in Wp . 
Let kr = kr(p) be the length of the shortest period of the sequence VQ, V^9 V^, 
.... We prove that kr = k (Lemma 2.1 below) and get the following result. 

Theorem 1.2: Let Sr = S f(p) be the set of frequencies with which different 
residues occur in the sequence vn [0 < n < k(p) ] . For p > 7, p\a(a?- + 4) we have 

S' = {0, 1, 2} or {0, 1, 2, 3} if k(p) £ 0 (mod 4), 
Sf = {0, 1, 2} or {0, 2, 3} or {0, 1, 2, 4} or {0, 2, 3, 4} 

if k{p) = 0 (mod 4). 
Moreover, 

(1.3) Sr = S if fc(p) t 4 (mod 8). 
Corresponding to Schinzel?s three corollaries, we deduce from Theorem 1.2 

the following corollaries. 

Corollary 1.3: If p > 7, p\a?- + 4, then at least one residue mod p does not 
occur in the sequence Vn. 

Corollary 1.4: If p * 5, pjfaia2 + 4), then at least one residue mod p occurs 
exactly twice in the shortest period of the sequence Vn. 
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Corollary 1.5: For a = 1, p > 7, 

S' = {0, 1, 2, 3} if fc(p) 2 0 (mod 4), 
Sr = {0, 1, 2} or {0, 2, 3} or {0, 1, 2, 4} or {0, 2, 3, 4} 

if fc(p) E 4 (mod 8), 
6" = {0, 1, 2, 4} or {0, 2, 3, 4} if k{p) = 0 (mod 8). 

L. Somer [2] has proved Corollary 1.3 except for the case where p = 1 or 9 
(mod 20). 

2. Some Lemmas 

Let £ = a2 + 4 and let £ be a zero of x2 - ax - 1 in the finite field F# , 
where q = p if (p) = 1 and ̂  = p2 if (p) = -1 (we exclude the case p\D) 

q • 

For un and #n we have the formulas 

rn _ (_r-l\n 

(2.D un = J ' / , i?n = c" + (-r1)7 1 . 
Let 6 be the least positive exponent such that £6 = 1. 

The following seven lemmas correspond to the lemmas in [1]. 

Lemma 2.1: For p\2D, we have kT(p) = [6, 2] = k(p). (Here, the symbol [6, 2] 
means the least common multiple of 6 and 2.) 

Proof: The second equation above is the content of Lemma 1 in [1]. The first 
equation follows by exactly analogous considerations using (2.1). D 

Lemma 2.2: Let p\lD. The conditions 

n E m (mod 2) and vn = vm 

hold if and only if either n = m (mod k) or n E m = 0 (mod 2) and n + m = 0 
(mod fc) or k = 0 (mod 4), n E /T? E 1 (mod 2) and n + m = k/2 (mod fe) . 

Proof: We use (2.1) and combine arguments in the proofs of Lemma 2 and Lemma 3 
in [1]. • 

Lemma 2.3: Let p\lD. The conditions 

n E m (mod 2) and Vn = -Vm 

are equivalent to 

n E 77? E 1 (mod 2) and n + m = 0 (mod k) If k = 2 (mod 4) , 

n = m + k/2 (mod 2) and Vn = Vm + k/2 if A: E 0 (mod 4) . 

Proof: We use (2.1) and combine arguments in the proofs of Lemma 2 and Lemma 3 
in [1]. • 

Lemma 2.4: Let p\2D and let 0 < n < k. We have vn = 0 if and only if 

k E 2 (mod 4) and rc = k/2, 
k E 0 (mod 8) and n = fc/4 or n = 3/c/4. 

Proof: Analogous t o the proof of Lemma 4 in [ 1 ] . • 

Lemma 2.5: Let p\lB. We have 

/c|p - 1 i f ( j j ) = 1, fe|2(p + 1) i f ( | ) = - 1 . 

Proof: In view of Lemma 2 . 1 , t h i s i s e x a c t l y the same as Lemma 5 in [ 1 ] . D 
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Lemma 2.6: If k = 2(p + 1) = 0 (mod 8), then for every nonnegative integer e 
there is an n such that 

( 2 . 2 ) vn+e = vn. 

Proof: If ug ̂  0, we use the identity 

and find by virtue of Lemma 4 in [1] that the quotients 
Vn+e _ n ^ k k 

for 0 < n < —, n * -r 
V 2 4 

are all distinct. Since k/2 = p + 1, we have p distinct elements of Fp . One 
of them must be 1, which gives (2.2). 

Suppose now that ue = 0. By Lemma 4 in [1], e E 0 (mod k/2). It follows 
from Lemma 2.4 that we can take n = /c/4. D 
Lemma 2.7: Let pJ2Z). We have 

fc/2-1 k/2-I k-l 

Proof: Analogous to the proof of Lemma 7 in [1]. Q 

We remark that Lemma 2.6 and the last equation in Lemma 2.7 will not be 
used in this paper. 

3. Proof of Theorem 1.2 

To prove Theorem 1.2 we shall consider successively the cases k t 4 (mod 8) 
and k E 4 (mod 8). In the first case we prove (1.3). 

1. Let k t 4 (mod 8). It follows from Lemma 2.4 that 0 occurs in the se-
quence Vn (0 < n < k). Thus, the sequence Vn (0 < n < k) is a non-zero multi-
ple of a translation of the sequence un (0 < n < k). In fact, if t is the 
least positive integer such that Vn = 0, then -t is the amount by which the 
sequence un (0 < n < k) is translated and Vt+i is the constant multiplier. It 
then follows immediately that the sequences Vn (0 < n < k) and un (0 < n < k) 
have the same frequency pattern of residues appearing in these sequences. 
(1.3) now follows immediately. 

2. Let k E 4 (mod 8). According to Lemma 2.4, 0 does not occur in the 
sequence Vn (0 < n < k) so that 0 € Sr. 

According to Lemma 2.2, every element in the sequence t^j (0 < 2j < k) 
occurs there exactly twice, except for the elements VQ and V^/z > which occur 
once. Moreover, t̂ /2 = -VQ by Lemma 2.3. Similarly, every element in the 
sequence T?27- + i(0 < j < k/2) occurs there exactly twice, except for the elements 
~V\m and ̂ 3̂ /14 = -V^lh » which occur once. 

Since k = 0 (mod 4), it follows from Lemma 2.1 that 6 = k and, therefore, 
%k/2 = _lo Using (2.1), we see that 

(3.1) Vljh = v\k/h = -4. 

We assume now that 2 £. S!. Consider the elements V2j (0 < 2j < k/2). These 
must occur in the sequence ^2j' + l (0 < 2j + 1 < k) . Since by Lemma 2.3 

V2j = ~~Vk/2-2j 

there are two cases: 
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and 

and 

I . V2. * ±Vk/h (0 < 2j < k/2), 

I I . V2.,= Vk/h and Vk/2_2., = V3k/l^ fo r some j r (0 < 2j ' < k/2). 

We s h a l l c o n s i d e r t h e s e two cases s e p a r a t e l y . 

Case I : In t h i s case of the two sequences 

v2. (0 < 2j < k, j * 0, j * fc/4) 

V2j+l (0 < 2 j + 1 < k, 2 j + 1 * fc/4, 2 j + 1 * 3fc/4) 

one i s a pe rmuta t ion of the o t h e r . Using ( 3 . 1 ) , i t fo l lows t h a t 

fc/2-1 k/2-1 

Z ^L - 2(4) = Z Vh + i - 2 ( - 4 ) , 
J = 0 J j = 0 J 

from which we infer, using Lemma 2.7, that 2A: E 16 (mod p) , /e E 8 (mod p) . 
It follows from Lemma 2.5 that either 

& = 2(p + 1) or fc < p + 1. 

If k = 2(p + 1), then fc E 8 (mod p) implies 3 E 0 (mod p) , which contradicts 
the assumption p > 7 . If fc < p + 1, then we must have k = 8, which contradicts 
the assumption k E 4 (mod 8). 

Case II: In this case, there are two different elements in the sequence 
^2j' + l (0 < 2j + 1 < k) which occur twice in this sequence and which are not 
equal to any element V>2j (0 < 2j < k/2). Since we are assuming that 2 £ S!, 
these elements must appear in the sequence i?2j (0 < 2j < k) and, therefore, 
they must be VQ and V^/z = ~VQ. it: follows that the sequences V^i (0 < 2j < k) 
and ^2j" + l (0 < 2j + 1 < k) consist of the same elements. Moreover, VQ and 
Vk/2 > which occur in the former sequence once, occur in the latter sequence 
twice and the elements V>2j' = Vk/h an<^ Vk/2-2j' = ~^Zklh •> occurring in the former 
sequence twice, occur in the latter sequence once. It follows that 

~,2 
k/2 - 1 

£ % • 
J = 0 J 

- 2(A) -- 4 ( -4 ) 
k/2 - 1 

- E j = 0 
^•+1 - 4(2) - 2(-4), 

from which we obtain, using Lemma 2.7, that 2k E -16 (mod p) , k = -8 (mod p) . 
In a similar manner to that in Case I, we conclude that either 5 = 0 (mod p ) , a 
contradiction, or fe = p - 8 = 1 (mod 2), which contradicts Lemma 2.1. 

The assumption 2 £ Sf thus leads to a contradiction in every case, so that 
we have proved that 2 £ 5'. 

Now we prove that either 1 G S [ or 3 G 5' but not both. We must again look 
at the four elements VQ, Vk/2> ~V~k/M > an<^ ^3k/^ • lt: ̂ s c l e a r that our assertion 
is true if we prove that the following four conditions are equivalent: 

(3.2) In E 1 (mod 2) such that vn = VQ, 

(3.3) 3n E 1 (mod 2) such that vn = ̂ k/2 > 

(3.4) In E 0 (mod 2) such that U^ = ̂ /^ > 

(3.5) 3 n E 0 (mod 2) such that v~n = Vok/^ . 

Since ~V~k\2 = - # Q and ^3^/4 = ~^wi+ it follows from Lemma 2.3 that 

(3.2) «> (3.3) and (3.4) ̂ > (3.5). 

It remains to be proved that 

(3.2) <~ (3.4). 
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(3 .2 ) => (3 .4 ) Suppose t h a t n = 1 (mod 2 ) , vn = vQ. We prove t h a t 

Since fc/4 = 1 (mod 2 ) , t h i s w i l l prove ( 3 . 4 ) . I t fo l lows from (2 .1 ) t h a t 

(3 .7 ) c n - i = r n + i 
and that (3.6) is equivalent to the equation 

n̂ + k/4 + ^-n-k/4 = k̂/4 __ ̂ -kA 

which, using (3.7), can be written as 

(3 .8 ) an - DUk/Li + rk/k) = o. 
It follows from Lemma 4 in [1] that ukj^ = 0. This, by (2.1), implies that 
(3.8) holds. Therefore, also (3.6) holds and we have proved the implication 
(3.2) - (3.4). 

(3.4) =» (3.2) Suppose that n = 0 (mod 2) and ^ = t^A e W e Prove that 

Using (2.1), the equation (3.9) can be written as 
(3.10) pn + 3kl^ _ r-n-3k/4 _ 2 

We find 
^ n + 3 k / k = (_£-" + £^A _ -̂k/4 )£-3k/4 = _^-n + 3kA + ^k _ ^k / 2 

= -rn+3k/k + 1 - ( - 1 ) , 
so that (3.10) will follow if we show that 
(3.11) r-̂  + Sk/4 _|_ r-n-3k/4 _ r-^/r3k/4 + r-3k/4\ _ Q^ 

But 

a3k/4 + r3k/4}2 = (Ck/2)3 + 2 + ( r k / 2 ) 3 = (_1}3 + 2 + (_1}3 = 0j 

so that (3.11) follows and the implication (3.4) =*• (3.2) is proved. 
It has now been proved that the conditions (3.2)-(3.5) are all equivalent. 
Since every residue occurs at most twice among t>2j(0 - 2J < k) and at most 

twice among V^i + l (0 < 2j + 1 < k) it occurs at most four times among vn 
(0 < n < k). It follows from what has been proved that, in the case k E 4 (mod 
8), we have 

5f = {0, 1, 2} or {0, 2, 3} or {0, 1, 2, 4} or {0, 2, 3, 4}. 

This completes the proof of Theorem 1.2. • 

Proof of Corollary 1.3: For p\a3 this corollary follows directly from Theorem 
1.2. For p|a, we have vn = 0 or 2; hence, 0 £ 5'. • 

Proof of Corollary 1.4: If k f 4 (mod 8), then 5' = 5 by (1.3) and 2 €5' follows 
from Schinzel's Corollary 2. Corollary 1.4 clearly holds for p = 2 by inspec-
tion. If k = 4 (mod 8), then the proof that 2 G 5' in the proof of Theorem 1.2 
holds if p > 7. However, by (3.1), if k = 4 (mod 8), then 

Vk/h = V\k/h = ~4> 

which implies p = 2 or p E 1 (mod 4). Thus, 2 ^ S! can hold only if p = 5. • 

Remark 3.1: Corollary 1.4 is not formulated as generally as the corresponding 
Corollary 2 in [1], Example 3.2 shows that 2 £ S! can occur if p = 5. 
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Example 3.2: Take a = 2 and p = 5, p\a(a2 + 4) = 16. Then S' = {0, 3}. In 
fact, the shortest period consists of the residues 2, 2, 1, 4, 4, 2, 3, 3, 4, 
1, 1, 3. Note that in this case k = 2p + 2 = 12 E -8 (mod p) which was a 
possibility in Case II. 

Proof of Corollary 1.5: This corollary follows from Corollary 3 in [1] and 
Theorem 1.2. • 

We conclude this note by making the following observation. We can look at 
Corollary 2 in [1] and the corresponding Corollary 1.4 at the same time and 
calculate the smallest residue which appears exactly twice in the shortest 
period. Keeping the integer a fixed and considering primes p > 5, p\a{a2 + 4) 
let us denote these residues by sr^^p) and sr^ip) . It therefore follows from 
Lemma 4 in [1] and Lemma 2.4 above that we have the following result: 

srzu(p) = 0 ^ sr2v(p) = 0 <=> k(p) = 0 (mod 8). 
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