A NEW FORMULA FOR LUCAS NUMBERS

Neville Robbins

San Francisco State University, San Francisco, CA 94132
(Submitted January 1990)

Introduction

The Fibonacci sequence $\left\{F_{n}\right\}$ and the Lucas sequence $\left\{L_{n}\right\}$ are wel1-known to the readers of this Journal. Several closed form formulas exist for Fibonacci and Lucas numbers, namely:
(1) $\quad F_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}$,
where $\alpha=\frac{1}{2}\left(1+5^{\frac{1}{2}}\right), \quad \beta=\frac{1}{2}\left(1-5^{\frac{1}{2}}\right)$.
(3) $\quad E_{n}=\frac{1}{2^{n-1}} \sum_{k=0}^{\left[\frac{n-1}{2}\right]}\binom{n}{2 k+1} 5^{k}$,
(2) $\quad L_{n}=\alpha^{n}+\beta^{n}$,
(5) $\quad F_{n+1}=\sum_{k=0}^{\left[\frac{n}{2}\right]}\binom{n-k}{k}$
(6) $\quad L_{n}=\sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{n}{n-k}\binom{n-k}{k}$.

George E. Andrews, [1] and [2], derived an additional explicit formula for the Fibonacci numbers, which can be written as
(7) $\quad F_{n}=\sum_{k=-\left[\frac{n+1}{5}\right]}^{\left[\frac{n}{5}\right]}(-1)^{k}\left(\left[\begin{array}{c}n \\ 2 \\ 2\end{array} \frac{n k)]}{}\right)\right.$.

In [1], Andrews proved (7) by using a relation between the Fibonacci numbers and the primitive fifth roots of unity, namely:

$$
\alpha=-2 \cos (4 \pi / 5), \quad \beta=-2 \cos (2 \pi / 5)
$$

In [2], Andrews obtained (7) as a consequence of a polynomial identity. In this note, following Andrews, we derive a corresponding explicit formula for the Lucas numbers which is

Preliminaries

$$
\begin{align*}
& {\left[\frac{n}{2}\right]} \tag{9}\\
& \sum_{j=0} x^{j^{2}+j} \prod_{k=1}^{j} \frac{x^{n+1-j-k}-1}{x^{k}-1}=\sum(-1)^{t} x^{\frac{3}{2} t(5 t-3)}\left[\begin{array}{l}
{\left[\frac{n+3-5 t}{2}\right]} \\
\prod_{k=1}^{2}
\end{array} \frac{x^{n+2-k}-1}{x^{k}-1} .\right. \tag{10}\\
& F_{n+1}=\sum(-1)^{k}\binom{n+1}{\left[\frac{1}{2}(n+1-5 k)\right]+1} . \tag{11}\\
& \binom{n}{k}=\binom{n}{n-k} .
\end{align*}
$$

[Nov.

$$
\begin{equation*}
m=\left[\frac{m+r}{2}\right]+\left[\frac{m+1-r}{2}\right] \text { for all } m, r \tag{12}
\end{equation*}
$$

$$
\begin{align*}
& \binom{m-1}{r-1}=\frac{r}{m}\binom{m}{r} \text { if } 1 \leq r \leq m \tag{13}\\
& L_{n}=F_{n+1}+F_{n-1} \tag{14}
\end{align*}
$$

Remarks: Equation (9) is the Theorem from [2] with $\alpha=-1$. Equation (10) is obtained by taking the limit as x approaches 1 in (9) and then applying (5). Equations (11) through (14) are elementary.
Proof of (8): Equation (10) implies that

$$
\begin{equation*}
F_{n-1}=\sum(-1)^{k}\binom{n-1}{\left[\frac{1}{2}(n-1-5 k)\right]+1} \tag{15}
\end{equation*}
$$

Replacing k by $-k$ in (15), we get

$$
\begin{equation*}
F_{n-1}=\sum(-1)^{k}\binom{n-1}{\left[\frac{1}{2}(n-1+5 k)\right]+1} \tag{16}
\end{equation*}
$$

which implies, by using (11), that

$$
\begin{equation*}
F_{n-1}=\sum(-1)^{k}\binom{n-1}{n-2-\left[\frac{1}{2}(n-1+5 k)\right]} \tag{17}
\end{equation*}
$$

If we now use equation (12), we see that

$$
\begin{equation*}
F_{n-1}=\sum(-1)^{k}\binom{n-1}{\left[\frac{1}{2}(n-5 k)\right]} \tag{18}
\end{equation*}
$$

Applying (13) to equation (18), we obtain

$$
\begin{equation*}
F_{n-1}=\sum(-1)^{k} \frac{\left[\frac{1}{2}(n-5 k)\right]}{n}\binom{n}{\left[\frac{1}{2}(n-5 k)\right]} \tag{19}
\end{equation*}
$$

Equation (19) together with equations (7) and (14) yields

$$
\begin{equation*}
L_{n}=\sum(-1)^{k} \frac{n+\left[\frac{1}{2}(n-5 k)\right]}{n}\binom{n}{\left[\frac{1}{2}(n-5 k)\right]}, \tag{20}
\end{equation*}
$$

which is the same as (8) and the proof is complete. (The limits of summation in (8) are determined by the criterion that $\left.0 \leq\left[\frac{1}{2}(n-5 k)\right] \leq n_{0}\right)$

Concluding Remarks

The reader who consults [1] should take note that (i) Andrews' middle initial is erroneously given as $\mathrm{H} . ;$ (ii) on pages 113 and 117 , the name "Einstein" should be "Eisenstein." Both errors were made without consulting Andrews and were not in his original manuscript.

Acknowledgment

I wish to thank the referee for his suggestions, which led to a simpler proof of (8).

References

1. George E. Andrews. "Some Formulae for the Fibonacci Sequence with Generalizations." Fibonacci Quarterly 7.2 (1969):113-30.
2. George E. Andrews. "A Polynomial Identity which Implies the Rogers-Ramanujan Identities." Scripta Math. 28 (1970):297-305.
