Hence for $A=6, B=1 / 10$ it follows that

$$
C_{n+2}^{\prime}-C_{n+1}^{\prime}-C_{n}^{\prime}=F_{n+2}
$$

Clearly

$$
C_{n}=n / 2 F_{n}+n / 10 L_{n}+a F_{n}+b L_{n}
$$

Taking $n=0$ we get $b=0$ 。 For $n=1$ we get $a=2 / 3$. Therefore we have

$$
C_{n}=n / 2 F_{n}+n / 10 L_{n}+2 / 5 F_{n}=\frac{n L_{n+1}+2 F_{n}}{5} .
$$

Also solved by Ronald Weimshenk, John L. Brown, Jr., Donald Knutb, H.H. Ferns and the proposer.

Editorial Note: Another characterization, besides the convolution

$$
C_{n+1}=\sum_{r=1}^{n+1} F_{r} F_{n-r}=\frac{(n+1) L_{n+2}+2 F_{n+1}}{5}
$$

is the number of crossings of the interface, in the optical stack in problem B-6, Dec. 1963, p. 75, for all rays which are reflected n-times.

If

$$
f_{0}(x)=0, \quad f_{1}(x)=1, \quad \text { and } f_{n+2}(x)=x f_{n+1}(x)+f_{n}(x),
$$

the Fibonacci polynomials, then

$$
f_{n}(1)=F_{n} \text { and } f_{n}^{\prime}(1)=C_{n-1}
$$

$X \times X \times \times$

MATH MORALS

Brother U. Alfred
A tutor who tutored two rabbits,
Was intent on reforming their habits.
Said the two to the tutor,
"There are rabbits much cuter,
But non-Fibonacci, dagnabits. 1 "
*The author has just taken out poetic license \#F 97 according to one clause of which it is permissible to corrupt corrupted words.

