CONCERNING THE EUCLIDEAN ALGORITHM

R. P. KELISKY
IBM Watson Research Center, Yorktown Heights, New York

In most discussions of the integer solutions of the equation

$$
\begin{equation*}
a x+b y=1, \quad(a, b)=1 \tag{1}
\end{equation*}
$$

reference is made to the fact that an integer solution of (1) may be obtained by using the Euclidean algorithm. With the restriction that $\mathrm{a}>\mathrm{b}>1$ we shall show that in the $\mathrm{x}-\mathrm{y}$ plane the solution of (1) obtained by the Euclideanalgorithm is the lattice point on the line (1) which is nearest the origin. This is probably not a new result, but we cannot find a reference to it in the literature。 Dickson [1, pp. 41-52] gives other algorithms for solving (l) for which it is known that the algorithm yields the lattice point on (l) which is nearest the origin.

Suppose $a>b,(a, b)=1$, and $a \neq 1(\bmod b)$ and consider the Euclidean algorithm applied to the integers a and b. One obtains the well-known sequence of equations:

with $r_{n}=1$. The requirement that $a \not \equiv 1(\bmod b)$ is equivalent to $r_{1}>1$, and hence the Euclidean algorithm will require at least a second step. Hence $n \geqq 2$ and $r_{n-1} \geqq 2$ 。

To obtain a solution of (1) one then derives the following sequence of equations in which, for notational convenience, $a=r_{-1}$ and $b=r_{0}$:

$$
\begin{align*}
l=r_{n} & =r_{n-2}-q_{n} r_{n-1} \\
& =-q_{n} r_{n-3}+\left(1+q_{n} q_{n-1}\right) r_{n-2} \\
& \cdot \\
& \cdot \\
& =P_{i} r_{n-i-1}+Q_{i} r_{n-i} \tag{3}\\
& \cdot \\
& \cdot \\
& =P_{n} r_{-1}+Q_{n} r_{0}
\end{align*}
$$

The P_{i} and Q_{i} are polynomials in the q_{i} and the solution $\left(P_{n}, Q_{n}\right)$ will be called the Euclidean algorithm solution of (1). It is determined uniquely by the algorithm described by the equations (2) and (3).

$$
\text { Lemma 1: } \quad\left|P_{n}\right|<\frac{1}{2} b \text { and }\left|Q_{n}\right|<\frac{1}{2} a .
$$

Proof: We first prove by induction

$$
\begin{equation*}
\left|P_{i}\right| \leqq \frac{1}{2} r_{n-i} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|Q_{i}\right|<\frac{1}{2} r_{n-i-1} \quad \text { for } \quad i=1, \ldots, n \tag{5}
\end{equation*}
$$

with equality possible in (4) only if $i=1$. We have

$$
l=P_{i} r_{n-i-1}+Q_{i} r_{n-i}
$$

and since

$$
r_{n-i-2}=r_{n-i-1} q_{n-i}+r_{n-i}
$$

it follows that

$$
1=Q_{i} r_{n-i-2}+\left(P_{i}-q_{n-i} Q_{i}\right) r_{n-i-1}
$$

and we have the recurrence relations
(6)

$$
P_{i+1}=Q_{i}
$$

and

$$
\begin{equation*}
Q_{i+1}=P_{i}-q_{n-i} Q_{i} \tag{7}
\end{equation*}
$$

with $P_{1}=1$ and $Q_{1}=-q_{n}$. To prove that $\left|P_{1}\right|=1 \leqq \frac{1}{2} r_{n-1}$ recall that $r_{n-1} \geqq 2$. Similarly,

$$
\left|Q_{1}\right|=q_{n}=\left[\frac{r_{n-2}}{r_{n-1}}\right]<\frac{r_{n-2}}{r_{n-1}}<\frac{1}{2} r_{n-2}
$$

From (6) it follows that $\left|P_{2}\right|<\frac{1}{2} r_{n-2}$, and from (7) $\left|\Omega_{2}\right|<\frac{1}{2} r n-3$ since

$$
\begin{aligned}
\left|Q_{2}\right|=\left|P_{1}-q_{n-1} Q_{1}\right| & \leqq\left|P_{1}\right|+q_{n-1}\left|Q_{1}\right| \\
& <\frac{1}{2} r_{n-1}+q_{n-1} \cdot \frac{1}{2} \cdot r_{n-2} \\
& =\frac{1}{2} r_{n-3} .
\end{aligned}
$$

Now suppose that

$$
\left|P_{k}\right|<\frac{1}{2} r_{n-k} \quad \text { and } \quad\left|Q_{k}\right|<\frac{1}{2} r_{n-k-1}
$$

for $k=2, \ldots, i$. Then from (6)

$$
\left|P_{k+1}\right|=\left|Q_{k}\right|<\frac{1}{2} r_{n-k-1}
$$

and

$$
\begin{aligned}
\left|Q_{k+1}\right|=\left|P_{k}-q_{n-k} Q_{k}\right| & \leqq\left|P_{k}\right|+q_{n-k}\left|Q_{k}\right| \\
& <\frac{1}{2} r_{n-k}+q_{n-k}\left(\frac{1}{2} r_{n-k-1}\right) \\
& =\frac{1}{2} r_{n-k-2}
\end{aligned}
$$

This completes the induction. Since $r_{-1}=a$ and $r_{0}=b$, we have proved the lemma if we take $i=n$ in (4) and (5).

It seems intuitively clear that there cannot be two lattice points on (l) which are equidistant from the origin if $a \neq b$. The proof of this is straightforward but for completeness we give it here.

Lemma 2: If $\mathrm{a}>\mathrm{b}>0$ and $(\mathrm{a}, \mathrm{b})=1$, there do not exist two distinct lattice points on $a x+b y=1$ which are equidistant from the origin.

Proof: Suppose (a, β) and (ξ, η) are distinct lattice points on the given line which are equidistant from the origin. Then

$$
\begin{equation*}
a^{2}+\beta^{2}=\xi^{2}+\eta^{2} \tag{8}
\end{equation*}
$$

and $a \mathrm{a}+\mathrm{b} \beta=\mathrm{a} \boldsymbol{\xi}+\mathrm{b} \boldsymbol{\eta}=1$. We solve for β in terms of $\mathrm{a}, \boldsymbol{\eta}$ in terms of ξ, and substitute these in (8) to obtain

$$
\begin{equation*}
\left(a^{2}-\xi^{2}\right) b^{2}=2 a(a-\xi)-a^{2}\left(a^{2}-\xi^{2}\right) \tag{9}
\end{equation*}
$$

Since $a \neq \xi$ by hypothesis,

$$
\begin{equation*}
(a+\xi) b^{2}=2 a-a^{2}(a+\xi) \tag{10}
\end{equation*}
$$

But this implies that $a \mid(a+\xi)$ since $(a, b)=1$, and also that $(a+\xi) \mid 2 a$. Hence, $a+\xi= \pm a$, or $a+\xi= \pm 2 a$. If $a+\xi= \pm a$, then (10) implies the Diophantine equation $a^{2}+b^{2}= \pm 2$ which is impossible if $a \neq b$. If $a+\xi= \pm 2 a$, then $a^{2}+b^{2}= \pm 1$. Clearly there is no solution to this equation such that $a>b>0$ and $(a, b)=1$.

It is well known that if $\left(x_{0}, y_{0}\right)$ is any lattice point on (1) then all of the lattice points on (1) are given by the equations

$$
\begin{aligned}
& x=x_{0}-b t \\
& y=y_{0}+a t
\end{aligned}
$$

where t runs over the set of all integers. We can now prove our
Theorem. If $a>b>1$ and $(a, b)=1$ then the Euclidean algorithm solution of (1) is the lattice point on (l) which is nearest the origin.

Proof. First suppose that $a \neq 1(\bmod b)$. Denote the Euclidean algorithm solution of (1) by (P_{n}, Q_{n}). Clearly the set, S, of positive integers $\left(P_{n}-b t\right)^{2}+\left(Q_{n}+a t\right)^{2}$ has a smallest member. If $P_{n}^{2}+Q_{n}^{2}$ is not the smallest number in S then there exists an integer $t \neq 0$ such that

$$
P_{n}^{2}+Q_{n}^{2}>\left(P_{n}-b t\right)^{2}+\left(Q_{n}+a t\right)^{2}
$$

or

$$
0<\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)|\mathrm{t}|<2\left|P_{\mathrm{n}} \mathrm{~b}-\mathrm{Q}_{\mathrm{n}} \mathrm{a}\right|
$$

But from the lemma we have

$$
0<\left(a^{2}+b^{2}\right)|t| \leqq 2\left(\left|P_{n}\right| b+\left|Q_{n}\right| a\right)<a^{2}+b^{2}
$$

This is impossible; hence $t=0$ and $\left(P_{n}, Q_{n}\right)$ is the smallest number in S.

The only remaining caseis if $a \equiv 1(\bmod b)$ and $a>b>1$. Here the Euclidean algorithm is complete in one step and $P_{1}=1$ and $Q_{1}=-q_{1}=-(a-1) / b$. The expression $S(t)=\left(P_{1}-b t\right)^{2}+\left(\Omega_{1}+a t\right)^{2}$ can be rewritten

$$
c\left[t-\frac{c-a}{b c}\right]^{2}+\frac{1}{b^{2}}
$$

where $c=a^{2}+b^{2}$. Now $S(t)$ is a minimum for $t=t *=(c-a) / b c$, but $b>1$ and $c>a$ imply that $c(b-1)+a>0$, or $0<t *<1$. Therefore, the integer t for which $S(t)$ is a minimum is either 0 or 1 . It is easy to show that $S(1)>S(0)$ if $(c-a) / b c<1 / 2$. But

$$
\frac{\mathrm{c}-\mathrm{a}}{\mathrm{bc}}<\frac{1}{\mathrm{~b}} \text { and } \mathrm{b} \geqq 1
$$

hence $\left(P_{1}, Q_{1}\right)$ is the point on $a x+b y=1$ whichis nearest the origin. This completes the proof of the theorem.

It is an easy consequence of this theorem that if a and b are consecutive Fibonacci numbers, $a>b>1$, then the lattice point P on the line $a x+b y=1$ which is nearest the origin has Fibonacci coordinates. In fact, if $a=F_{m+1}$, then P is $\left(F_{n-1},-F_{n}\right)$ where n is the greatest even integer not exceeding m. This follows readily from the identity

$$
F_{m+1} F_{n-1}-F_{m} F_{n}=(-1)^{n} F_{m-n+1}
$$

REFERENCES

1. Dickson, L. E., "History of the Theory of Numbers," Vol. 2, Chelsea, New York (1952).
