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1. INTRODUCTION 
P r o f e s s o r Char les A. Hal i jakhas called my at tent ion to the fol-

lowing in te res t ing var iant of P a s c a l ' s t r iangle [7] 

1 

( 1 . 1 ) i i * :> :> 1 

1 1 5 4 6 3 1 
1 1 6 5 10 6 4 1 

1 1 7 6 15 10 10 4 1 
1 1 8 7 21 15 20 10 5 1 

The law for format ion is evident. One a l t e rna te ly adds together 
two e lements or br ings down a single e lement in o rde r to obtain a new 
e lement in the next row. It appea r s that the e lements turn out to be 
binomial coefficients. More in teres t ingly , it appea r s that the e le -
ments in any row add to give a Fibonacci number : 1, 2, 3, 5, 8, 13, 
21, 34, 55, 89, 144, e tc . 

The object of the p resen t note is to verify these observat ions and 
to develop some other re la t ions suggested by the a r r a y of n u m b e r s . 

2. RECURRENCE RELATIONS 
We may symbolize the a r r a y (1.1) as follows: 

A° A 0 
A l . 1 

A Q A l 

. 2 2 2 
A 0 A l A 2 

. . . e tc . 
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If w e l e t A1}, j = 0, 1, 2, . . . , n, d e s i g n a t e a n a r b i t r a r y e l e m e n t 

of the a r r a y t h e n we m a y u s e t he de f in ing r e c u r r e n c e r e l a t i o n ( law of 

f o r m a t i o n ) to g ive a n i n d u c t i v e d e f i n i t i o n of the a r r a y ( 1 . 1 ) . I n d e e d 

we m a y s a y t h a t t he c o n d i t i o n s 

<2-X> A 2 k + l = A 2 k ' 

(Z 2) A n + 1 - A n + A n 

Kt"C) A 2 k _ A 2 k - 1 + A 2 k ' 

( 2 . 3 ) A ° = 0, j > n o r j < 0 , 

( 2 . 4 ) AQ = 1- n = 0 , 1 , 2 , . . . , A j = 1, 

a r e su f f i c i en t to de f ine t h e a r r a y ( 1 . 1 ) . We m a y c o m b i n e ( 2 . 1 ) a n d 

(2 . 2) i n to a s i n g l e r e c u r r e n c e r e l a t i o n 

( 2 . 5 ) A n + 1 . A * + l + j - 1 ) J A n 

if we d e s i r e . 

It i s no t d i f f icu l t to c o n j e c t u r e (and p r o v e by i n d u c t i o n ) t h a t 

/ n - k^ 

*L-( k 
/ n - 1 - k 

< 2 ' 7 > A 2 k + 1 ^ k 

a n d , a g a i n , t h e s e m a y be e x p r e s s e d in the s i n g l e f o r m u l a 

»-[>H 
( 2 . 8 ) A n = 

J 

w h e r e [x] wou ld m e a n the i n t e g r a l p a r t of x ( the " g r e a t e s t i n t e g e r 

in x " ) . 

3 . F I B O N A C C I N U M B E R S 

The F i b o n a c c i n u m b e r s , F , m a y be de f ined by the c o n d i t i o n s 
n J J 

F~ = 0, F 1 = l , a n d F ,, = F + F , . E x p l i c i t l y i t i s e a s y to show t h a t 0 1 n+1 n n - 1 ^ J J 
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(3 1) F = ^ f (n ' V (1 + ^ ) n + 1 - (1 - ^5)n+1 

and this well-known formula provides the clue to our next r e s u l t s . 
We have 
Theorem 1. For the a r r a y (1.1) we have 

(3.2) 2 A * = F . n > 0 . 
J = 0 J 

Proof. 
n [n/2] n [ (n-l) /2] 

X A* = X Aj + 2 A* 
j = 0 J k = 0 Z k k = 0 ^ k + i 

= F + F = F 
n+1 n n+2 

as des i r ed to show. 
Next we may es tab l i sh 

Theorem 2. For the a r r a y (1.1) we have 

n 
(3.3) 2 (-1)J A n = F , , n > 1. 
X ' • A J n ~ l 

Thiswouldalso .be t rue for n = 0 if we extend the Fibonacci sequence 
backwards as is usual ly done. As for the'proof, the same steps as 
used for Theorem 1 give us at once F ., - F or F , as c la imed. & n+1 n n-1 

4. A GENERAL POLYNOMIAL 
We now define the polynomial A (x) by 

(4.1) A (x) = 2 A * x J . 
j = 0 J 
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In view of (2. 6) and (2. 7) we have 

[n/2] /n - k\ , [(n-1,/2] /n - 1 - k^ 2 k + 1 
(4.2) A (x) = X x + 2 

k = 0 \ k / k = 0 

The polynomial A (x) satisfies a simple recurrence relation 

which we may find as follows. By means of (2. 5) we have 

n + 1 , i . n + 1 . T n + 1 . , n + 1 
2 A n + 1 xJ = I An . xJ + I 2 An xJ + 1 2 (-DJAnxJ, 

j = 1 J j = 1 J j = 1 J j = 1 J 

n + 1 , n , n . , n 
2 An + 1 xJ = 2 An xJ+1 + 1 2 An xJ + I 2 An (-x)J , 

j = 0 J j = 0 J j = 0 J ^ j = 0 J 

or therefore 

(4. 3) 2 A X 1 (x) = (2x + 1)A (x) + A (-x). 
n+1 n n 

It would be possible to set down a closed expression for A (x) 

by means of the summation formula 

[n/2] /n - k\ , „n+l 
(4. 4) £ ( ) xK 

k = 0 \ k / ( u - l ) ( l + u ) n jT+u)2 

but this does not seem to simplify very nicely. It would be of interest 
to evaluate A (x) for values of x other than x = 1 and x = - 1 , how-n 
ever. We remark that (4. 4) may be written in the alternative form 

[n/2] /n - k\ 0 1 1 n+1 n+1 / , , / r i 
(4.5) 2 2 n ~ 2 k x k = U " V ( u = l + v / l T T l , 

k = 0 \ k / u - v ) v = 1 - v x + 1 

5o LUCAS NUMBER VARIANT OF PASCAL'S TRIANGLE 

Using the same law of formation as we imposed to generate rows 

in (1.1) we may form the array 
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1 
I 2 

1 1 2 
1 1 3 2 

1 1 4 3 2 
1 1 5 4 5 2 

1 1 6 5 9 5 2 
1 1 7 6 14 9 7 2 

1 1 8 7 20 14 16 7 2 
1 1 9 8 27 20 30 16 9 2 

where the only difference is that we use a different ini t ial value in the 
second spot on the second row* Let us symbolize the a r r a y by using 
the notation B. in the same way we d i scussed A . . We f i rs t observe 

J J 
that the rows add to give the Lucas number s : 1, 3, 4, 7, 11, 18, 29? 
47, 76, 123, 199, e t c In other words , we have, evidently, the two 
re la t ions 

(5.2) 2 if? = L ,, 
j = o J n + 1 

a n d 

n 
(5.3) 2 (-1)J B; = L 2 , 

j = 0 J n " z 

where the Lucas number s a r e defined by 

L = 2, L = 1, L ,T = L + L , 0 1 n+1 n n-1 
Explici t ly, we have 

n /2] / n - k' 
(5.4) L^ = 2 n 

n " k = 0 n " k \ k . / 2 n 

(1 + ^ 5 ) n + (1 - v/5)1 

The a r r a y (5. 1) may be specified by the conditions 
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<5 ' 5> B 2 k l l = B2k> 

(5.6) B X 1 = B Z k - l + B 2 k ' 

(5.7) B n = 0, j > n or j < 0 , 

(5.8) BQ = 1, n = 0, 1, 2, . . . , B* = 2, 

We may combine (5. 5) and (5. 6) by wri t ing 

(5.9) B n + 1 = B n , + 1 + ( ' 1 ) J B n , 
J J"1 2 J 

and we conjecture on the bas is of (5.4) and the above that 
.'n - k\ 

(5.10) B n n 
2k n - k x , k 

and 
/n - 1 - k\ 1 

< 5 - n > BLr^TTF^ k j > B 1 = 2 . 
The two re la t ions could be combined into a single express ion , however , 
the r e su l t is not as s imple as was the case with (2. 8). 

Assoc ia ted with the Lucas var iant of P a s c a l ' s t r iangle we may 
consider the polynomial 

n 
(5. 12) B (x) = X Bn xJ . 

n . « j 
J - 0 J 

In view of the r e c u r r e n c e (5. 9), jus t as in the case of (2. 5), we may 
show that the companion re la t ion to (4. 3) is 

(5. 13) 2B ,. (x) = (2x + 1)B (x) + B (-x) . 
\ / n+lN ' v ' nx ' . nx ' 
The formula 

n/2l / n - k\ ~, , n . n 
1 J ^ ' » n-2k k „ u + v , (5.14) X — ^ I 2 x = 2 ^—jr2-

1 ' k ^ 0 n - k \ ^ / u + v 
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where 

u = 1 W x + 1 , v = 1 - Vx + 1 , 

could be used to give a closed form for (5. 12). 

6. GENERALIZATION 
A genera l a r r a y suggested by the two cases we have d i scussed 

may be set down as follows: 

a 
a b 

a a b 
a a a+b b 

(6. 1) a a 2a+b a+b b 
a a 3a+b 2a+b a+2b b 

a a 4a+b 3a+b 3a+3b a+2b b 
a a 5a+b 4a+b 6a+4b 3a+3b a+3b b 

a a 6a+b 5a+b 10a+5b 6a+4b 4a+6b a+3b b 

We may define the a r r a y by the following conditions: 

(6.2) C° = oj = a, c} = b, 

(6. 3) C n = 0, if j > n or j < 0, 

(6.4) C n + 1 = C° + 1 +
?

( - 1 ) J C n , n > l , j > 0 . 

For the r e c u r r e n c e (6.4) we have imposed the condition that n ^ 1. 
We do this for the following reason . Choose Cn = a. Then, by (6.4) , 
we have Cn = C , + Cn = Cn provided we impose (6. 3). But then we 
have C, = Cn + 0 = a, not b. To avoid this difficulty we may define 

1 
C-, = b. For the next row we have then 

C 0 = C - l + C 0 = ° + A = a ' 
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ci = cl+ ° 

2 1 1 
C 2 = C l + Z = b + ° 

Thus a simple condition to at tach to the r e c u r r e n c e is that n ^ 1. 
Another way to proceed would be to define Cn = b and Cn = a. E v e r y -
thing would be the same except the topmost e lement , and the r e c u r r e n c e 
would hold in al l c a s e s . However, then the n iceness of the a r r a y (5. 1) 
would suffer by having B n = 2 which would not fit so well with the 
Lucas n u m b e r s . There is a ce r t a in a r b i t r a r i n e s s in combining the 
var ious p rope r t i e s which seem to be of in t e re s t . Because of this , the 
r eade r may find it ins t ruc t ive to examine other possible definit ions. 

F r o m our definition it is easy to show that the r o w - s u m s a r e 
given by 

n 
(6. 5) S (a, b) = 2 C n = a F ,, + bF / n > 0, 

n j = 0 J n 

in t e r m s of the Fibonacci n u m b e r s . Thus we find S (1, 1) = F ., + F 
n n+1 n = F ,- as before. Also, S (1, 2) = F ^ + 2F = F ,. + F + F n+2 n n+1 n n+1 n n 

= F , - , + F = L , , as before. (It is easi ly proved that L = F , , + F , . ) n+2 n n+1 J ^ n n+1 n-1 
The a r b i t r a r i n e s s involved in the f i rs t two rows, however, shows 

up again when we consider the a l te rna t ing r o w - s u m s . We find these a r e 

n 
T (a, b) = 2 (-1)J C n = b, a - b, b, a, a + b, 2a + b, 3a + 2b, . . . 

n j ' = o J 

and, except for the f i rs t such sum, we can show that 

n 
(6.6) T (a, b) = 2 ( - l ) J C n = a F 9 + bF _ n > l . 

n . r, 1 n-2 n - i 
J = 0 J 
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Remark : The usual definition of Fibonacci numbers with negative 
index is 

F M - D ^ F -n n 

so that the doubly infinite sequence of Fibonacci numbers is 

. . . , 5, - 3 , 2, - 1 , 1, 0, 1, 1, 2, 3, 5, . . . 

In view of this , the formula (6. 7) b reaks down for n = 0 as it then 
gives the value -a + 2b instead of the value b. However, for n ^ 1 
ag reemen t is found. In pa r t i cu la r , when a = 1 = b, we have T (1,1) 
= F n + F 0 = F , a s in (3. 3) A s imi l a r r esu l t holds for the n-2 n-3 n-T 
Lucas number var iant (5. 1). 

7. FURTHER RELATIONS FOR THE POLYNOMIAL A (x) 

By means of re la t ion (4. 2) we may show readi ly that A (x) s a t i s -
fies the second-o rde r r e c u r r e n c e re la t ion 

(7.1) A n + 2 ( x ) = A n + 1 ( x ) + x 2 A n ( x ) . 

In fact we have 

A n + l ( x ) = 

0 < k <5+L 

a n d 

,2A(x.= s r•%*<"• s r ' ~ V k t 3 
o <k < £ X k / o <k i B l i V k 

1 < k < ^ 

n + 1 - k 

k - 1 
2k , 

x + 
1 i k 

Using the fact that 

/P-k^ + /P"kx _ (P+l'K 1 k } *k- l ' " { k h 

it then readi ly follows that 
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7 /n + 2 - k\ 
A n + 1 (x )+x^A n (x )= 1 ( 1 x ^ + 2 

0<k<H±i k ' 0<k<^i 

= A n + 2 ( x ) . 

/n + 1 -

\ k 

Dec. 

' k \ 2k+l 

r 
Assoc ia ted with A (x) we may next introduce a re la ted poly-

nomial K (x) defined by 
n J 

(7.2) K (x) = x n A (I) = S A n x n _ j . 
n n x - n ^ 

Relat ion (7. 1) then becomes 

(7. 3) K ' (x) = xK ,. (x) + K (x), with Kn(x) = 1, K. (x) = x + 1 . n+Z n+1 n 0 . 1 

This r e c u r r e n c e re la t ion is of the same form as one studied by Cata-
lan [4] . This is mentioned by Byrd [3] . 

It may be of i n t e r e s t to indicate how the Q - m a t r i x technique ( I j m a y 
be applied to a study of K (x). Define 

(7.4) Q = ( X 

Then 

/ f , , (x) f (x) \ 
(7.5) Q n = { n + 1 n ] . n>l , 

Vfn<X> fn-lW/ 
where the f's a r e Fibonacci polynomials defined by 

(7.6) f
n + 2

( x ) = x f
n + l ( x ) + f

n
( x ) ' f 0 ( x ) = ° ' f l ( x ) = 1 -

It is eas i ly shown that 

(7.7) K (x) = f . . (x) + f (x) . \ / n n+1 n 

F r o m (7. 7) we have next 

( - l ) j + 1 K . (x ) = ( - l ) j + 1 f . + 1 ( x ) - (- l) j f . (x) 
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(7.8) 1 (-1)J K(x) = ( - l ) n f (x) 
j = 0 J n + i 

so that the Fibonacci polynomials f (x) may be expres sed in t e r m s of 
the K or A polynomials ve ry eas i ly . 

We next observe that (7. 5) and (7. 7) yield 

(7.9) 
, / K (x) K . (x) 

Q n + Q n - 1 = [ n< ' n -1* 
\ K n- l< X > Kn-2<X>, 

F r o m this r e su l t it is poss ible to evaluate the de te rminan t of the K's 
as follows. To begin with, |Q 

K (x) K ,(x) 
nx ' n - l v ' 

| Q | n = ( - l ) n . Then we find that 

K ,(x) K ?(x) n-1 n-Z 

Q n + Q n - l | = | Q a - l ( Q + I ) | ? j = (1 0) 

n - 1 Q 

( - 1 ) X 

Q + 11 

We may state the resu l t m o r e elegantly in the form 

(7.10) 
K . . (x) K (x) 

n+1 n 
K (x) n K n - l ( x ) 

= (-Dnx 

This may be compared with the re la t ion 

(7 .n ; 
F F 

n+a n+a+b 
n+b 

- l ) n F F. a . b 

for the o rd ina ry Fibonacci number s (F =0, F = l , F L O = F f1 + F ) 3 0 1 n+Z n+1 n 
which was posed as a problem in the Amer i can Mathemat ica l Monthly[8]., 
In pa r t i cu l a r , this r a i s e s the quest ion about a s imi la r genera l iza t ion 
of the de te rminan t (7. 10). Indeed, we shall now prove by induction 
that 
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(7.12) 
K (x) K , , , (x) 

n+a n+a+b 
K (x) K ,. (x) 

n n+b 

= (-1) 
K K ,, a a+b = (-1) (K K - K , J . v a b a+b' 

This will be t rue for al l in tegers if we define 

(7. 13) K - n
( x ) = K n - l ( " x ) 

as is suggested by r e c u r r e n c e re la t ion (7. 3). 
As for the proof of (7. 12), we may f i rs t show that (as is obvious 

for n = 0) 

(7.14) K ,! K ,u + K K , , , . = (-1) (K. Ku - KnK, , J , n+1 n+b n n+b+1 x ' N 1 b 0 1+b 

where , for brevity, we omit wri t ing x which will r e m a i n unchanged,, 
Now, in fact, by means of (7. 3) we have 

( - l ) n [K L1K , U - K K i K i i l = ( " l ) n r K ,, (K ± L J O - x K l u . i ) - K K ,U,J x ' L n+1 n+b n n+b+lj x ' L n+1x n+b+2 n+b+1; n n+b+lj 

= ( - l ) n [K , . K , , 7 - (xK , ,+K )K , , , , 1 L n+1 n+b+2 n+1 n n+b+lj 
L+l 

( " i ) n [Kn+2Kn+b+l " K n+l K n+b+2] ' 

so that the exp res s ion is unchanged when n is rep laced by n + 1. By 
induction, then, re la t ion (7.14) follows. 

In the same way, we could show that (7. 12) holds for a = 2, that 
i s , 

(7.15) K , 9 K , , - K K ,, ^ = ( - l ) n (K„K u - K„K9 J_J . 
x ' n+2 n+b n n+b+2 2 b 0 2+b' 

We may complete the a rgument by an induction on a. Suppose 
that (7. 1 2) holds for fixed n, b and up to a ce r t a in value of a(>l) . Then 

K , K - K K _, ,, = (-l)n K K - K nK ,, 
n+a n+b n n+a+b a b 0 a+b 

and 

K , , K ,, - K K , , , = ( - 1 ) K ,KU 
n+a-1 n+b n n+a- l+b n a-1 b 

K 0 K a - l + b ' 

and if we mult iply the f i r s t of these by x, add to the second, and r e -
cal l the basic r e c u r r e n c e re la t ion (7. 3), -we obtain p r ec i s e ly 
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Kn+a + lKn+b " K
n

K n + a + l +b = ^ K
a + l K

b " V a + l + b • 

so that the induction goes through. This proof is nothing more than a 

variant of a similar proof for Problem E 1396, relation (7.11) above, 

suggested by Mr. John H. Biggs who was then a graduate student at 

West Virginia University. Clearly the same technique may be used in 

other cases where a recurrence relation of a suitable sort is presup-

posed. Thus (7. 12) also holds for f (x) in place of K (x). 
n ^ n 

We should like to mention still another interesting relation in-

volving the polynomial K (x). The reader may find it worthwhile to 

carry out an inductive proof that 
(7. 16) Kn(x) + (-l)aKn+2a(x) + xKn+a(x) = 0 . 

When a = 1 this becomes again (7. 3). It is possible to base a proof 

of (7. 12) on this relation. The idea traces back as far as George 

Boole [2] , and may have further unsuspected possibilities. Under 

miscellaneous propositions, in Chapter XII, pp. 229-231, Boole uses 

an invariance technique which may be of interest. By (7. 1 6) we have 

(omitting x for brevity) 

K + (-l)aK , 9 = -xK , . 
n n+2a n+a 

This relation being true for all integers n, a, we next replace n by 

n + b, and we have, for arbitrary n, a, b, 

K ,, + (-l)aK , 7 , K - -xK , ,, . n+b n+2a+b n+a+b 

Here, -x plays the part of the number p in Boole's argument. We 
may eliminate -x from the last two relations by multiplying the for-
mer by K , ., , the latter by K , , and equating the resulting left-

y n+a+b y n+a ^ to to 

hand members. This yields 

K , K ,, + (-l)aK , K _,_„ MU = (-l)aK , 9 K , ,, + K K , ,, . n+a n+b x ' n+a n+2a+b n+2a n+a+b n n+a+b 

Multiplying through by (-1) we have, transposing terms, 

(7.17) (-l)n|K , K X U -K K , J . J=(- l ) n + a [K , 9 K , , - K , K , 7 , J x ' x ' L n+a n+b n n+a+bj x I n+2a n+a-b n+a n+2a+bj 
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Call the left-hand member of this F(n). Then the crux of Boole's 

argument would be that (7. 17) asserts that F(n) = F(n + a). This be-

ing so for a perfectly arbitrary integer a, as we supposed to begin 

with, then it follows that F(n) is invariant with respect to n. Hence 

we have only to set n = 0, and we find that 

F(n) = F(0) = K K - KnK ,, 
x ' v ' a b 0 a+b 

and this of course is precisely what we claimed in relation (7. 12). 

The beauty of Boole's method is that one may oftentimes begin 

with a non-linear recurrence relation (difference equation), such as 

(7. 12) is indeed, and relate this back to a linear relation, as (7. 16) 

actually is. The method is especially useful in the study of determinants 

of polynomials which satisfy suitable recurrence relations. 

The relations (7.11) and (7.12) may be called Turan relations, 

and the reader is referred to [5, 6] for pertinent journal references 

and some variations. A detailed bibliography on the Turan expressions 

(and Turan inequalities) would contain over 110 references to journal 

articles and books according to the author's current file on the literature. 
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