A NOTE ON FIBONACCI SUBSEQUENCES

John H. Halton Brookhaven National Laboratory Upton, New York

The question has been raised, whether certain subsequences of the Fibonacci sequence

(1)
$$F_0 = 0, F_1 = 1, F_{n+1} = F_n + F_{n-1}$$

can themselves be obtained directly from a recurrence-relation.

First, consider a <u>periodic subsequence</u>, $P_n = F_{nq+r}$, of every q-th Fibonacci number, starting with F_r . It is known (see, e.g., D. Ruggles, Fibonacci Quarterly 1(1963)2:77) that

(2)
$$F_{p+q} = L_{q} F_{p} + (-1)^{q-1} F_{p-q}$$
,

Putting p = nq + r and substituting the appropriate P_n , we obtain the hoped-for relation,

(3)
$$P_0 = F_r$$
, $P_1 = F_{q+r}$, $P_{n+1} = L_q P_n + (-1)^{q-1} P_{n-1}$.

On the other hand, we may wish to consider the <u>complementary</u> <u>sequence</u> of those F_i which are not of the form P_n . If these are written Q_k , it is easy to see that, after an initial (r - 1) terms, this sequence comes in cycles of (q - 1) consecutive F_i , and that

$$Q_1 = F_1$$
, $Q_2 = F_2$, ..., $Q_{r-1} = F_{r-1}$; $Q_r = F_{r+1}$, ...,
 $Q_{n(q-1)+r} = F_{nq+r+1}$, ..., $Q_{n(q-1)+r+q-2} = F_{nq+r+q-1}$, ...

Thus, $Q_{k+1} = Q_k + Q_{k-1}$, except when a P_n intervenes. If q = 2, we have the special situation, that there is a P_n between each adjacent pair of Q_k , and the complementary sequence is itself periodic and satisfies the relation (3):

(4)
$$Q_{k+1} = L_2 Q_k - Q_{k-1} = 3Q_k - Q_{k-1}$$

if $q \ge 3$, at most one P_n can intervene between Q_{k-1} and Q_{k+1} . This occurs if k = n(q-1)+r-1, so that the remainder R_k when (k-r+1)

A NOTE ON FIBONACCI SUBSEQUENCES

Dec.

is divided by (q - 1) is 0, when $Q_{k+1} = F_{nq+r} + Q_k = 2Q_k + Q_{k-1}$; and if k = n(q-1)+r, so that $R_k = 1$, when $Q_{k+1} = F_{nq+r} + Q_k = 2Q_k + Q_{k-1}$, and if k = n(q-1)+r, so that $R_k = 1$, when $Q_{k+1} = Q_k + F_{nq+r} = 2Qk - Q_{k-1}$. If q = 3, R_k can only be 0 or 1, and we get the rather simple

relation

(5)
$$Q_{k+1} = 2Q_k + (-1)^{R_k} Q_{k-1} = 2Q_k + (-1)^{k-r+1} Q_{k-1};$$

but if $q \ge 4$, the neatest formula I could find was to define

$$S_k = max (2 + R_k - R_k^2, 1), T_k = min (R_k, 2),$$

when

(6)
$$Q_{k+1} = S_k Q_k + (-1)^{T_k} Q_{k-1}$$
.

Alternatively, in terms of Kronecker's δ ,

(7)
$$Q_{k+1} = \{1 + \delta_{OR_k} + \delta_{1R_k}\} Q_k + \{1 - 2\delta_{1R_k}\} Q_{k-1}$$
.

An investigation of subsequences of the forms $X_n = F_{n2}$ and $X_n = F_{2n}$, for example, strongly suggests that only periodic sequences of the form P_n yield linear recurrence-relations with constant co-efficients.

322