A NOTE ON FIBONACCI SUBSEQUENCES

John H. Halton
Brookhaven National Laboratory
Upton, New York

The question has been raised, whether certain subsequences of the Fibonacci sequence

$$
\begin{equation*}
\mathrm{F}_{0}=0, \quad \mathrm{~F}_{1}=1, \quad \mathrm{~F}_{\mathrm{n}+1}=\mathrm{F}_{\mathrm{n}}+\mathrm{F}_{\mathrm{n}-1}, \tag{1}
\end{equation*}
$$

can themselves be obtained directly from a recurrence-relation.
First, consider a periodic subsequence, $P_{n}=F_{n q+r}$, of every q-th Fibonacci number, starting with F_{r}. It is known (see, e. g., D. Ruggles, Fibonacci Quarterly l(1963)2:77) that

$$
\begin{equation*}
\mathrm{F}_{\mathrm{p}+\mathrm{q}}=\mathrm{L}_{\mathrm{q}} \mathrm{~F}_{\mathrm{p}}+(-1)^{\mathrm{q}-1} \mathrm{~F}_{\mathrm{p}-\mathrm{q}} \tag{2}
\end{equation*}
$$

Putting $p=n q+r$ and substituting the appropriate P_{n}, we obtain the hoped-for relation,

$$
\begin{equation*}
P_{0}=F_{r}, P_{1}=F_{q+r}, \quad P_{n+1}=L_{q} P_{n}+(-1)^{q-1} P_{n-1} \tag{3}
\end{equation*}
$$

On the other hand, we may wish to consider the complementary séquence of those F_{i} which are not of the form P_{n}. If these are written Q_{k}, it is easy to see that, after an initial ($r-1$) terms, this sequence comes in cycles of ($q-1$) consecutive F_{i}, and that

$$
\begin{gathered}
Q_{1}=F_{1}, Q_{2}=F_{2}, \ldots, Q_{r-1}=F_{r-1} ; Q_{r}=F_{r+1}, \ldots, \\
Q_{n(q-1)+r}=F_{n q+r+1}, \ldots, Q_{n(q-1)+r+q-2}=F_{n q+r+q-1}, \ldots
\end{gathered}
$$

Thus, $Q_{k+1}=Q_{k}+Q_{k-1}$, except when a P_{n} intervenes. If $q=2$, we have the special situation, that there is a P_{n} between each adjacent pair of Q_{k}, and the complementary sequence is itself periodic and satisfies the relation (3):

$$
\begin{equation*}
Q_{k+1}=L_{2} Q_{k}-Q_{k-1}=3 Q_{k}-Q_{k-1} . \tag{4}
\end{equation*}
$$

if $q \geq 3$, at most one P_{n} can intervene between Q_{k-1} and Q_{k+1}. This occursif $k=n(q-1)+r-1$, so that the remainder R_{k} when ($k-r+1$)
is divided by $(q-1)$ is 0 , when $Q_{k+1}=F_{n q+r}+Q_{k}=2 Q_{k}+Q_{k-1}$; and if $k=n(q-1)+r$, so that $R_{k}=1$, when $Q_{k+1}=F_{n q+r}+Q_{k}=2 Q_{k}+Q_{k-1}$, and if $k=n(q-1)+r$, so that $R_{k}=1$, when $Q_{k+1}=Q_{k}+F_{n q+r}=2 Q k-Q_{k-1}$. If $q=3, R_{k}$ can only be 0 or 1 , and we get the rather simple relation

$$
\begin{equation*}
Q_{k+1}=2 Q_{k}+(-1)^{R_{k}} Q_{k-1}=2 Q_{k}+(-1)^{k-r+1} Q_{k-1} \tag{5}
\end{equation*}
$$

but if $q \geq 4$, the neatest formula I could find was to define

$$
S_{k}=\max \left(2+R_{k}-R_{k}^{2}, 1\right), \quad T_{k}=\min \left(R_{k}, 2\right)
$$

when

$$
\begin{equation*}
Q_{k+1}=S_{k} Q_{k}+(-1)^{T_{k}} Q_{k-1} \tag{6}
\end{equation*}
$$

Alternatively, in terms of Kronecker's δ,

$$
\begin{equation*}
Q_{k+1}=\left\{1+\delta_{O_{k}}+\delta_{1 R_{k}}\right\} Q_{k}+\left\{1-2 \delta_{1 R_{k}}\right\} Q_{k-1} \tag{7}
\end{equation*}
$$

An investigation of subsequences of the forms $X_{n}=F_{n}$ and $X_{n}=F_{2} n$, for example, strongly suggests that only periodic sequences of the form P_{n} yield linear recurrence-relations with constant coefficients.

