A PERMUTATIVE PROPERTY OF CERTAIN MULTIPLES

 OF THE NATURAL NUMBERSW. D. Skees

Digital Computer Laboratory
University of Illinois

1. INTRODUCTION

In number theory one encounters such numbers as
.105263157894736842
(the period of $2 / 19$) and .102564 (the period of $4 / 39$) one of whose very interesting properties will be treated here. If the terminal digit be removed from the end of the number and placed at the beginning, the result is the product of that digit and the original number.

Examples:

$$
\begin{array}{rrr}
.105263157894736842 & .102564 \\
\hline .210526315789473684 & & \times 4 \\
\hline \underline{4} 0256
\end{array}
$$

The purpose of this paper will be to investigate the existence and characteristics of such numbers.

2. DEFINITIONS

A positive number G will be called a gauntlet if it has a cyclic permutation with the property that, when the natural number g making up its last n digits be moved to the first n digits' positions of the number, then the result is exactly the product $g G$. When such a number G existsfor a natural number g we will occasionally write $G(g)$ for emphasis. The product $g G$ is called the second order gauntlet, written $G^{(2)}$.

We also define the function D whose value $D(x)$ is the number of digits in x. It follows from the above definitions that $D(G)=D\left(G^{(2)}\right)$.

3. FAMILY OF GAUNTLETS

The question arises: are there many gauntlets for a single natural number? We answer with a theorem.

Theorem 1. Each natural number for which a gauntlet exists has infinitely many gauntlets each consisting of a number of sets of the same period.

Proof. Let $\cdot p_{1} p_{2} \cdots p_{D(G)}$ be a digit-wise representation of G, a gauntlet of the natural number g. We observe that $g G$ is of the form $\cdot q_{1} q_{2} \cdots q_{D(g)}$ because $D\left(G^{(2)}\right)=D(G)$. This means there is no carry on the left after multiplication of G by g. This implies

$$
g \cdot\left(\cdot p_{1} \cdots p_{D(G)} p_{1} \cdots p_{D(G)}\right)=\cdot q_{1} \cdots q_{D(G)}{ }^{q_{1}} \cdots q_{D(G)}
$$

and the theorem follows by induction.
Example:

$$
\begin{gathered}
\mathrm{g}=4 \\
\mathrm{G}_{1}(\mathrm{~g})=.10256 \underline{4} \\
\mathrm{G}_{1}^{(2)}(\mathrm{g})=. \underline{410256} \\
\mathrm{G}_{2}(\mathrm{~g})=.10256410256 \underline{4} \\
\mathrm{G}_{2}^{(2)}=. \underline{410256410256}
\end{gathered}
$$

Let us call numbers which are gauntlets for the same natural number and whose digits are repetitions of the digits of a simpler gauntlet members of the family of that gauntlet. Similarly we define a family of second order gauntlets. Hereafter unless otherwise stated G and $G^{(2)}$ will be understood to be the least positive gauntlets of their families.

4. DIGITS COMMON TO ALL GAUNTLETS

Theorem 2. The leading non-zero digit of a gauntlet is 1 .
Proof. Let g be represented by the digit-wise expansion $c_{1} c_{2} \ldots c_{D(g)^{\circ}}$ Then $G(2)=. c_{1} c_{2} \ldots c_{D(g)} x_{1} x_{2} \ldots x_{D(G)}-D(g)^{\text {. Now }}$

$$
\begin{equation*}
c_{1} \ldots c_{D(g)} \frac{.0 \ldots 0}{\sqrt{c_{c}} \cdots^{\cdots c_{D}}} \frac{1}{D(g)-1^{c^{x}} D(g)^{x_{1}}{ }_{2} \cdots x_{D(G)}-D(g)} \tag{1}
\end{equation*}
$$

and by definition the quotient must be G.

Corollary 2. A gauntlet of the natural number g has exactly $D(g)-1$ leading zeros.

Proof. Count the leading zeros of the quotient of (1).
Note. The leading zeros are part of the repeating set of digits in the family of a gauntlet.

Theorem 3. For g not a power of 10 there are exactly $2 D(g)-1$ zeros to the immediate right of the leading non-zero digit 1 of G. Proof. From (1)

$$
G=.0_{1} \cdots{ }^{0} D(g)-1 x_{1} \cdots x_{D(G)-D(g)}
$$

(the x_{i} are now the unknown digits of the numerator) where

$$
x_{D(G)-2 D(g)+1} \cdots x_{D(G)-D(g)}=c_{1} \cdots c_{D(g)}=g .
$$

Whence

$$
G^{(2)}=\cdot c_{1} \cdots c_{D(g)} 0_{1} \cdots{ }^{0} D(g)-1{ }^{1} x_{1} x_{2} \cdots x_{D(G)-2 D(g)}
$$

Then by definition
which implies

$$
\mathrm{G}=.0_{1} \cdots 0_{\mathrm{D}(\mathrm{~g})-1} 1^{0_{1}} \cdots 0_{\mathrm{D}(\mathrm{~g})-1^{0}} \mathrm{D}(\mathrm{~g}) \cdots
$$

This means that

(and x is non-zero because $10_{1} \ldots 0_{D}(g)$ is greater that g) which proves the theorem.

Corollary 3. The gauntlet of a natural number g which is a power of 10 is exactly $._{1} \ldots{ }^{0} \mathrm{D}(\mathrm{g})-1{ }^{1} 0_{1} \ldots{ }^{0} \mathrm{D}(\mathrm{g})-1$.

Proof. That $g=10^{n}$ implies $D(g)=n+1$. That is to say $\mathrm{g}=10_{1} \ldots 0_{\mathrm{n}}=10_{1} \ldots 0_{\mathrm{D}}(\mathrm{g})-1$, the terminal $\mathrm{D}(\mathrm{g})$ digits of $\cdot 0_{1} \cdots{ }^{0_{D}(g)-1} 1^{1} 0_{1} \cdots{ }^{0}{ }_{D}(\mathrm{~g})-1$,
and

$$
\begin{aligned}
& ._{1} \ldots{ }^{0}(\mathrm{~g})-1{ }^{1} 0_{1} \ldots{ }^{0}(\mathrm{~g})-1 \\
& \begin{array}{lllll}
& 1 & 0_{1} & \ldots & 0^{D}(\mathrm{~g})-1
\end{array} \\
& \cdot{ }^{10_{1}} \cdots{ }^{0}{ }_{D(g)-1}{ }^{0} \cdots^{0}{ }^{D}(\mathrm{~g})-1 \quad \text { Q.E. D. }
\end{aligned}
$$

Exceptions must always be made in the following discussion for $g=10^{n}$ because only with sucha g are the $D(g)$ initial digits of g^{2} the digits of g itself.

Examples for the corollary.

$$
\begin{aligned}
G(1) & =.1 \\
G(10) & =.010
\end{aligned}
$$

It should be obvious by now that it is largely inconsequential whether we consider gauntlets as integers or decimals, because whether the number is 010 or .010 the digits are the same and our primary concern is which leading or trailing zeros are part of the number, not where the decimal point goes. It is more amenable to the notion of families to use decimals because of the obvious similarity to periodic decimals. However, in a following theorem (Theorem 5) the proof is expedited by reference to gauntlets as integers.

5. GENERATION OF A GAUNTLET IN SETS OF DIGITS

Let us now examine the interrelationships of the digits within a gauntlet and the way in which a natural number generates its own gauntlet.

Remark. The following discussion develops an algorithm which finds G for $g \neq 10^{n}$. Corollary 3 found G for every $g=10^{n}$, and it may be readily verified that the algorithm of this section finds a larger member of the family of $G\left(10^{\mathrm{n}}\right)$.

The terminal $D(g)$ digits of G make up g itself. Consequently the terminal $D(g)$ digits of $G^{(2)}$ must be the terminal $D(g)$ digits of g^{2} which are also the $D(g)+1$ st through the $2 D(g)$ th digits of G, counting from the righthand side. That is,

$$
G=\cdot x_{D(G)} \cdots x_{2 D(g)+1} d_{2 D(g)} \cdots d_{D(g)+1}{ }^{c_{D(g)}} \cdots^{c_{1}}
$$

where the d's are the $D(g)$ terminal digits of g^{2} and of $g G=G^{(2)}$. Moving leftward along G we see that the next set of $D(g)$ x's must represent the terminal $D(g)$ digits of the sum of the leading digits of g^{2} not included in the set $d_{D(g)} \ldots d_{1}$ and $g \cdot\left(d_{D(g)} \ldots d_{1}\right)$. So is the next set of $D(g)$ digits related to those to the right of it. To restate symbolically what we have just verbalized, the ith set of $D(g)$ digits (counting from the right where the a's are the sets) may be written

$$
\begin{equation*}
a_{i}=g a_{i-1}+r_{i-1}-\left[\frac{g a_{i-1}+r_{i-1}}{10^{D}(g)}\right] \cdot 10^{D(g)} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{i}=\left[\frac{a_{i-1} g}{10^{D}(g)}\right], \quad a_{1}=g, \quad \text { and } r_{1}=0 \tag{3}
\end{equation*}
$$

(Brackets indicate greatest integer division.)
These equations, which follow directly from the definitions, constitute an algorithm which, depending upon g alone, inevitably produces $G(g)$ if it exists. Since the algorithm generates only sets of $D(g)$ digits each we mayconclude $D(g)$ divides $D(G)$ and when G exists it has a left-most set a_{j} whose digit-wise representation is $0 . .01$ and that $r_{j+1}=0$. These conditions provide criteria for stopping the algorithm at a_{j}.

Remark. The single exception to the rule $" \mathrm{D}(\mathrm{g})$ divides $\mathrm{D}(\mathrm{G}){ }^{\prime \prime}$ is for $g=10^{n}$. The reason is that the two a_{i} of $G\left(10^{n}\right)$ share the commondigit 1. However, the algorithm will find a $G^{\prime}\left(10^{n}\right)>G$ such that $D(g)$ divides $D\left(G^{\prime}\right)$. That $G\left(10^{n}\right)$ is the only possible exception for the success of the algorithm may be readily verified.

Theorem 4. If G exists for a given g the algorithm (given above) generates G, and the condition $a_{j}=1$ and $r_{j+1}=0$ is sufficient to terminate the algorithm.

Proof. That the algorithm generates G follows from the preceding remarks in this section. If $a_{j}=1$ and $r_{j+1}=0$ the algorithm begins to repeat the digits of G because $a_{j+1}=g \cdot 1+0-0=g$, and $r_{j+2}=0$. This is identically the situation at the beginning of the algorithm, which
means from this point it would regenerate the same digits. Hence if a_{j} is the first set equal to l and such that $r_{j+1}=0$ then the digits generated up to that point make up the least positive member of the family, that is G.

Remark. An algorithm mentioned by Johnson [2] will find the period of the reciprocal of $10 \mathrm{~m}-1$ (where m is a natural number), but the result does not have the combined multiplicative and permutative property, which is the subject of this paper, for m of more than one digit.

Example. The period . 10027, a cyclic permutation of that found for $m=37$ by Johnson's method, has not the same property as has the number found by my method for $m=37$, namely

.01000	27034	33360	36766	$\frac{6937}{}$
.37010	00270	34333	60367	6669

6. THE EXISTENCE THEOREM

Theorem 5. For every natural number there exists at least one gauntlet and hence one family of the gauntlet.

Proof. That $G\left(10^{n}\right)$ exists follows from Corollary 3. Assume $\mathrm{g} \neq 10^{\mathrm{n}}$. As usual we assume G is the smallest positive member of its family. We recall that D counts all the digits in a number which are part of that number. This includes leading zeros. Let G be consideredaninteger. The relationship between g and G, from the definitions, is

$$
\frac{G-g}{10^{D(g)}}+g 10^{D(G)-D(g)}=g G=g^{(2)}
$$

which simplifies thus:

$$
\begin{gathered}
G-g+10^{D(G)} g=10^{D(g)} g G \\
G\left(1-10^{D(g)} g\right)+g\left(10^{D(G)}-1\right)=0 \\
G=\frac{g\left(10^{D(G)}-1\right)}{10^{D(g)} g-1}
\end{gathered}
$$

Now we require that G be an integer, which is true if and only if $g\left(10^{D(G)}-1\right)$ is congruent to 0 modulo $10^{D(g)} g-1$. This means

$$
10^{\mathrm{D}(\mathrm{G})} \mathrm{g} \equiv \mathrm{~g} \bmod \left(10^{\mathrm{D}(\mathrm{~g})} \mathrm{g}-1\right)
$$

Since $10^{D(g)} g-1$ and g are relatively prime

$$
10^{\mathrm{D}(\mathrm{G})} \equiv 1 \bmod \left(10^{\mathrm{D}(\mathrm{~g})} \mathrm{g}-1\right)
$$

Now

$$
\begin{equation*}
10^{x} \equiv 1 \bmod \left(10^{D(g)} g-1\right) \tag{4}
\end{equation*}
$$

has a solution $x=\phi\left(10^{D(g)} g-1\right)$ by Fermat's theorem because 10 and $10^{\mathrm{D}}(\mathrm{g}) \mathrm{g}-1$ are relatively prime. That is to say

$$
\begin{equation*}
10^{x_{g}} \equiv g \bmod \left(10^{D(g)} g-1\right) \tag{5}
\end{equation*}
$$

has a solution which means there exists an integer K such that

$$
\begin{equation*}
K=\frac{g\left(10^{x}-1\right)}{10^{D(g)} g-1} \tag{6}
\end{equation*}
$$

for a given integer g.
All solutions to (4) may be found in the following way. We divide successively increasing powers of 10 by $10^{\mathrm{D}(\mathrm{g})} \mathrm{g}-1$ until finally we are left with a remainder of 1 . This implies the solution to (5) may be found similarly. We divide the product of g and successively increasing powers of 10 by $10^{\mathrm{D}} \mathrm{g}_{\mathrm{g}} \mathrm{g}-1$ until finally there is a remainder of g . The number of zeros we use is the solution x.

Now (6) has a least positive solution x_{0}. Let the numerator (7) of the following expression be the least positive such numerator, that is let the appearance of g as a remainder be the first such appearance of g. If we can show that (7) is G we are finished since $D((7))$ which is x_{0} will also be $D(G)$, and x_{0} is known to be the least positive solution of (6) such that K is the least positive integer, and G is assumed to be the least positive gauntlet of g.

Dec.

$$
\begin{equation*}
{ }_{10} \mathrm{D}(\mathrm{~g})_{\mathrm{g}-1} \quad \frac{\mathrm{P}_{1} \mathrm{p}_{2} \cdots \mathrm{P}_{x_{0}}}{\mathrm{~g} \cdot 0 \quad 0 \cdots 0} \tag{7.}
\end{equation*}
$$

(8)

For keeping track of our zeros we will revert to the use of decimals. Adding terminal zeros to $1.000 .$. is simplified by the nature of the number (i.e. l. 0 followed by infinitely many zeros is equivalent to 1.0). We find ourselves studying

$$
\frac{1}{g_{10} 0^{D(g)}-1}
$$

or, equivalently,

$$
\frac{g}{g 10^{D(g)}-1}
$$

as far as x_{0} is concerned, rather than

$$
\frac{10^{x_{0}}}{g 10^{D(g)}-1} \text { or } \frac{g 10^{x_{0}}}{g 10^{D(g)}-1}
$$

Let g be expanded digitwise as $c_{1} \ldots c_{D(g)}$. Since ${ }_{10}{ }^{D(g)} g-1$ endsin 9 , and (8) ends in 0 while g ends in $c_{D}(g)$, then $p_{x_{0}}$ can only be ${ }^{c}{ }_{\mathrm{D}(\mathrm{g})}$. We rewrite (8), (9) and (10) as (13), (14) and (15) below:

$$
\begin{align*}
& \text { ••• } \tag{ll}\\
& \text {. . } \tag{12}\\
& \overline{q_{1} \cdots} \tag{13}
\end{align*}
$$

$$
\begin{align*}
& c_{1} \quad \cdots \quad c_{D(g)} \tag{14}
\end{align*}
$$

We introduce the convention of braces about the digit-wise expansion of a number to clarify arithmetic expressions. Then we may write (14) as

$$
\left\{c_{1} \cdots c_{D(g)}\right\} \cdot 10^{D(g)} c_{D(g)^{-c_{D}}} .
$$

Adding g we have (13):

$$
\left\{c_{1} \ldots c_{D(g)}\right\} \cdot c_{D(g)}{ }^{10^{D(g)}}-c_{D(g)}+\left\{c_{1} \cdots c_{D(g)}\right\}
$$

which reduces to

$$
\left\{c_{1} \cdots c_{D(g)}\right\} \cdot c_{D(g)} 10^{D(g)}+\left\{c_{1} \cdots c_{D(g)-1}\right\} \cdot 10 .
$$

But (13) without the suffixed 0 is

$$
\left\{c_{1} \cdots c_{D(g)}\right\} \cdot c_{D(g)} 10^{D(g)-1}+\left\{c_{1} \cdots c_{D(g)-1}\right\}
$$

which terminates in $c^{D}(g)-1$. This means that

$$
\mathrm{p}_{\mathrm{x}_{0}}-1={ }^{\mathrm{c}} \mathrm{D}(\mathrm{~g})-1 \text {, whence (12) is }\left(\mathrm{gl} 0^{\mathrm{D}(\mathrm{~g})}-1\right) \cdot \mathrm{c}_{\mathrm{D}}(\mathrm{~g})-1
$$

This implies that (11) is

$$
\begin{gathered}
\left\{c_{1} \cdots c_{D(g)}\right\} \cdot{ }^{c_{D}(g)-1} 10^{D(g)}-c_{D(g)-1} \\
+\left\{c_{1} \cdots c_{D(g)}\right\} \cdot c_{D(g)}^{10^{D}(g)-1}+\left\{c_{1} \cdots c_{D(g)-1}\right\} \cdot
\end{gathered}
$$

Redcuing as before and removing the suffixed 0 we have for (11)

$$
\left\{c_{1} \cdots c_{D(g)}\right\} \cdot\left\{c_{D(g)-1} c_{D}(g)\right\} \cdot 10^{D(g)-2}+\left\{c_{1} \cdots c_{D(g)-2}\right\}
$$

By induction after $D(g)$ such steps the remainder is

$$
\begin{equation*}
\left\{c_{1} \cdots c_{D(g)}\right\} \quad\left\{c_{1} \cdots c_{D(g)}\right\} \cdot 10^{0}+\{0\} . \tag{16}
\end{equation*}
$$

At each step the terminal digit in the remainder was a c_{i}. This implies

$$
\mathrm{p}_{\mathrm{x}_{0-D}(\mathrm{~g})+1} \cdots \mathrm{p}_{\mathrm{x}_{0}}=\mathrm{c}_{1} \cdots \mathrm{c}_{\mathrm{D}(\mathrm{~g})} .
$$

At this point the remainder ends in $\left\langle g^{2}\right\rangle$. (The new notation means the last digit of.) This means

$$
\mathrm{p}_{\mathrm{x}_{0}-\mathrm{D}(\mathrm{~g})}=\left\langle\mathrm{g}^{2}\right\rangle
$$

This seems to indicate generation of the same digits of the algorithm of section 5. Indeed they are identical because the minuend producing the remainder (16) is

$$
\left\{c_{1} \ldots c_{D(g)}\right\} \cdot 10^{D(g)}\left\langle g^{2}\right\rangle-\left\langle g^{2}\right\rangle+g^{2}
$$

which after removal of the suffixed zero is

$$
\left\{c_{1} \ldots c_{D(g)}\right\} \quad\left\langle g^{2}\right\rangle \quad 10^{D(g)-1}+\frac{g^{2}-\left\langle g^{2}\right\rangle}{10}
$$

which ends in $\left\langle g^{2}-\left\langle g^{2}\right\rangle\right\rangle$, and we see we must exhaust $D(g)$ powers of 10 again, thereby setting $p_{x_{0-2 D}}(g)+1 \cdots p_{x_{0}-D(g)}$ equal to the terminal $D(g)$ digits of g^{2}.

Alternatively we must, every $D(g)$ steps, exhaust the $D(g)$ digits of a set which corresponds to some a_{i} of the algorithm. Therefore by Theorem 4 the numerator is G if its first $D(g)$ digits are $0_{1} \ldots 0_{D}(g)-1{ }^{1}$ and its next $\mathrm{D}(\mathrm{g})$ digits are 0 . This latter condition is sufficient to make $r_{i+1}=0$.

We write the initial situation in the division process as

$$
\begin{aligned}
& \frac{\left\{\mathrm{c}_{1} \cdots \mathrm{c}_{\left.\mathrm{D}(\mathrm{~g}){ }^{0}{ }^{1} \cdot \quad \cdot \quad{ }^{0} \mathrm{D}(\mathrm{~g})\right\}^{-1}}^{1}\right.}{}
\end{aligned}
$$

because

$$
\left\{\mathrm{c}_{1} \cdots \mathrm{c}_{\mathrm{D}(\mathrm{~g})}\right\} \cdot 10^{\mathrm{D}(\mathrm{~g})}=\mathrm{c}_{1} \ldots \mathrm{c}_{\mathrm{D}(\mathrm{~g})}{ }^{0}{ }_{1} \cdot{ }^{0}{ }_{\mathrm{D}(\mathrm{~g})}
$$

and since

$$
10^{2 \mathrm{D}(\mathrm{~g})-1} \leq \operatorname{g10} 0^{\mathrm{D}(\mathrm{~g})}-1<10^{2 \mathrm{D}(\mathrm{~g})}
$$

we have

$$
\begin{aligned}
& \text { Q.E.D. }
\end{aligned}
$$

Corollary 5. For every natural number there is only one family of gauntlets and only one G, the least positive gauntlet.

Proof. The uniqueness of the algorithmic process and also of the division in the previous theorem.

7. ADDITIONAL THEOREMS

The following theorems, which may be easily verified, are submitted without proof.

Theorem 6. The period of $n /\left(n l 0^{D(n)}-1\right)$ where n is any positive integer is the same as the period of the reciprocal of $n l 0^{D}(n)-1$.

Theorem 7. Each digit of the period on $n /\left(n l 0^{D(n)}-1\right)$ appears in succession as the terminal digit of a remainder when decimal division is carried out.

Example:

$$
\begin{aligned}
& g=4 \\
& D(g)=.102564 \\
& \operatorname{g10} 0^{\mathrm{D}(\mathrm{~g})}-1=39 \\
& .102564 \\
& 3 9 \longdiv { 4 . 0 0 0 0 0 0 } \\
& 39 \\
& \text { (1) } 0 \\
& \frac{00}{1(0) 0} \\
& \frac{78}{2(2) 0} \\
& \frac{195}{2(5)} \\
& \frac{234}{1(6)} \\
& \frac{154}{4}
\end{aligned}
$$

Theorem 8. The digits of the period of $1 /\left(\mathrm{nl} 0^{D(n)}-1\right)$ are a cyclic permutation leftward $D(g)$ places of those of $n /\left(n 10^{D(n)}-1\right)$ where n is any natural number, and theorem 7 holds for $1 /\left(n 10 D^{D}(n)-1\right)$.

Theorem 9. For G the gauntlet of a given g, the following relation holds, $2 \mathrm{D}\left(\mathrm{gl} 0^{\mathrm{D}(\mathrm{g})}-1\right) \leq \mathrm{D}(\mathrm{G}) \leq \mathrm{g} 10^{\mathrm{D}}(\mathrm{g})_{-2}$.

Theorem 10. $D(g)$ divides the period of $g /\left(g 10^{D(g)}-1\right)$ and hence of $1 /\left(g 10^{D(g)}-1\right)$, provided $g \neq 10^{n}$, and, for $g=10^{n}$, then $D(G)=2 D(g)-1$.
8. PARTIAL TABLE OF THE FIRST 100 GAUNTLETS
$\frac{\text { The Period }}{\text { of a }}$

$\underline{\mathrm{g}}$		G	$\underline{\mathrm{D}} \mathrm{G})$	of	of
1	. 1		1	$\frac{1}{9}$	$\frac{1}{9}$
2	.1052631578947368	842	18	$\frac{2}{19}$	$\frac{1}{19}$
3	. 103448275862068	9655172413793	28	$\frac{3}{29}$	$\frac{1}{29}$
4	. 102564		6	$\begin{array}{r}4 \\ \hline 9\end{array}$	$\frac{1}{39}$
7	. 1014492753623188	8405797	22	$\frac{7}{69}$	$\frac{1}{69}$
34	. 010002942041776	9932333039129155634	34	34 3399	$\frac{1}{3399}$
37	. 010002703433360	367666937	24	37 3699	$\frac{1}{3699}$
100	. 00100		5	- 9990	$\frac{1}{99999}$

9. APPENDIX

An interesting question is, are there any more integers, g, such as 1 and 34 , where $D(G)=g$?

ACKNOW LEDGMENTS

P. M. Weichsel, Ph.D., for encouragement and lectures on number theory. P. T. Bateman, Ph. D., for bibliographical recommendations.

REFERENCES

1. L. E. Dickson, 'History of the Theory of Numbers," Vol. 1, Carnegie Institution, Washington, 1919, pp. 159-179.
2. W. W. Johnson, "On a Method of Forming the Periods of Circulating Decimals, Messenger of Math., 14(1884-1885), 14-18.
