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1. Introduction

In this article we use the elementary theory of symmetric functions and the
theory of characters of representations of the symmetric group to derive iden-
tities involving generalized Fibonacci and Lucas numbers. Not all the identi-
ties obtained are new; what is possibly of greater interest is the approach,
which may lead to further results. We have included some preparatory material
on partitions, Schur functions and characters in Sections 2, 3, and 5. Proofs
of the statements made there may be found, among many other places, in [1] and
[2]. Character calculations similar to those carried out in this paper are
found in [3].

Let a and b be any two unequal complex numbers. Define the Lucasian pairs
{U,} and {V,} by

n n
Un=a7:—2, V, =a*+Db"; n=0,1, 2, ...
Then U, and V, satisfy the recurrences
Upwo = PUpyy = QUys Vs = PVyyy = @Vy,

where P =a+b, @ = ab, P2-4Q # 0. In case P =1, Q = -1, put U, = F,, V, = L,,.
Then F,, and L, are the Fibonacci and Lucas numbers, respectively.

Let p; 2 pp 2 ¢+ 2 Pk be positive integers. One of our basic identities
has the form n
H
(1.1) Vﬁ Vo, «-- V% =.§: Am,oz,.“,ok;jUn—2j+l

Jj=0
where the A's are simply expressible in terms of § and certain characters of
the symmetric group. An identity inverse to (l.l) is also obtained. For cer-

tain choices of {pl, P25 eoes pk}, the relevant characters can be fairly readily
computed. In this way we obtain, for instance, the identity

m
3]
m- 29+ 1 m=- 27 + 1\] ~j _ pm-27+1
(1.2) j;) [( J ) - ( g - 249 )jIQ Um—2j+1 = pr Upa -
In Section 7 we use a different approach to derive identities involving Lucas
numbers and certain generalized binomial coefficients.

2. Partitions and Tableaux

A partition is a finite sequence of nonnegative integers:

A= (}\l, )\2, c ooy )‘t)

in nonincreasing order. A part of A is a nonzero member of {A;, Ap, ..., Atl.
The number of parts is the length, %()\), of A. The sum |A| = Ay, Ap, ...s Az
where k = 2(A) is the weight of A. ) is said to be a partition of |X|. Occa-
tionally we use an "exponential' notation for A:

A= 1P1282 B,
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Here, B; is the number of times 7 occurs in the sequence (A1s Aoy vy Ag).
EA], the diagram of A, is the set of all points (<, J) in Z2 such that
1 <g < X;. Thus, the diagram of (3, 3, 2, 1) is

Sometimes it is convenient to use squares rather than dots. Let A and u be
partitions with ]Tl = ]u]. A semi-standard tableau of shape A and content u is
an arrangement of u; 1l's, uy 2's, p3z 3's, etc., in the squares of the diagram
of A so that the rows are nondecreasing and the columns are strictly increas-
ing. For example, the semi-standard tableaux of shape (4, 2) and content (3,
2, 1) are

1 1 ]_ :Z and ]. 1 1 :3
213 212

Figure 1

Partitions may be ordered lexicographically. That is,
A > pdif Xy > pyp or if Ay = yp and Ay > uy
or if A} = u;, Ap = pyp, and A3 > u3, etc.
Semi-standard tableaux of shape A and content u can exist only if XA > py. (This

condition is not sufficient.)

3. Schur Functions

We shall be working in the ring Z[x;, %y, ..., £,] of polynomials in » inde-
pendent variables with integer coefficients. Such a polynomial is symmetric if
it is dinvariant under all permutations of the variables. For each n-tuple
a = (a1, 0p, «., 0y) in V", we denote by x* the monomial

0 = 0] n0p an
x xPtay? L.

If A is a partition of length < »n, the polynomial

My (X1 Loy oeey Tp) = P X%,
where the summation is over all permutations a of {A;, Ap, ..., A;} is symmet-
ric. The power sums
n
Pp = 2 %]
=1

are symmetric, as are the products

Py = Po Do, +++ Dy, (p = (p1> P25 ~vvs Pg))
With every partition A we can associate another type of symmetric function,
called a Schur function, or S-function. Let A be a partition (A1, Az, ..., X,)
and put § = n -1, n -2, ..., 1, 0). Define

Njtn-g . .
Ay g = det(x;? 9y, 1 <72 <mn, 1 <g<n.

Then
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as; = det(x]™7) = I @ - =

lsi<jsm
is the Vandermonde determinant. Clearly, a; divides a,,,. The quotient

Dyt

8y, = 5, (T15 Xgs wue, Tp) = a5

is a symmetric homogeneous polynomial of degree |X| which is called a Schur
function.

The sets My = {m,|2(X) <m} and S = {s,|2(}) < m} are Z-bases for A,, the
set of symmetric polynomials in m variables with coefficients in Z. Thus, for
example, we may express the polynomials s, as integral linear combinations of
the polynomials m,. We have

(3.1) 8y = Ky, umy .
[ul =[x
It is possible to show that the Kostka number X, , is the number of semi-stand-
ard tableaux of shape A and content u. Therefore, X, , is a nonnegative integer
that vanishes if A < y.

To express the polynomials p, as integral linear combinations of Schur
functions, we require the characters of X ,, the symmetric group on m letters.

We have
(3.2)  p, = 2. xleys
Al =1el
where Xé is the character of the irreducible representation of 2, determined
by A evaluated at the conjugate class of X2, consisting of permutations with
cycle-partition p.
Inverse to (3.2) is the relation
1

(3.3) s, =— 2 ecxp
Yoom Ty P

where ¢, is the number of permutations with cycle-partition p; i.e.,

m!
e, =
1272 oom (v Pyt e (v !
with o = 1" 2"2 (.. m' and [p| = m.

4. Basic Identities

If there are only two independent variables x; and x5, and if 2(u) = 3, then
my = 0. In this case (3.1) may be put in the form

2]

(4.1) s, (x> x3) =g%@xhn-mm@m-mmd’xﬁ’

where #n = [k‘. There can be no semi-standard tableau of shape A and content u
if L(A) > 2(u) because each of the 2(A) rows of the tableau must be headed by a
distinct integer chosen from a set of 2(u) integers. Thus, the only nontrivial
case of (4.1) occurs when Z(é) < 2. In this case it is not hard to see that,

if 0 =g < [%} and 0 < k < [E]’ we have

K(j,ﬂ—j),(k,n—k) =1 4if k > j, and
0 if k < 4,

Kig,n-9), (kyn-x)

whence
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H

Z,m(k, n- (&5 2)
k=g

s(J, n = J)(xy, x,)

Jopd (pm=27 n-24-1 n-24
xz(xl + x] x, + + xh 7))

or . .,
_ @@y @AY - apn2it

Ly - L2

(4:2) a5,y 7)

With U, and V, defined as in the introduction and p = (py, Pgs «+-» 0, ) > put
(4.3) Vo = Vo Vo, ... Vp
Then, from (4.2), we have
(4.4) i nosar B) = QU piv1.
Moreover,

p,(as b)
so that, with Ipl =7, (3.2) becomes

P

2 . o
(4.5) Vo = Z X(OJ’YZ-J)QJUn—zjﬂ’

our first basic identity. For example, in the Fibonacci case, taking p = (5,
3, 2) and referring to the table of characters of 2, in [1], we have

(-1) X(j’lo_j)F“—zj =F11 - (-1)Fg + Fy7 = 0+ Fg + (-1)F3 = 2F,

(5,3, 2)
89 + 34 + 13 -0 -2 -2 =132
11 4+ 3 = L5L3L2 = L(S, 3, 2)*

]

From (3.3) we get our second basic identity

Qj”!Un-2j+l = cpx(‘j "o J)V where 0
pl=n

IA

e

IA
NI

(4.6)

v
(OS]

0= 2, coxpVp> if 2())

[o]=n

5. Special Cases of the First Basic Identity

In some cases it is not difficult to compute xg’”"j). We use the Murnaghan-
Nakayama Rule, which permits an inductive calculation. This requires some pre-
liminary explanation.

Let (¢, J) be the point in the Z'™M row (counting downward) and J*™ column
(counting to the right) in [p], the diagram of p. The hook H , j consists of
the point (Z, J) together with the points of [p] directly to its right and
directly below The number of points in HS j» the length of the hook, is
denoted by h . The polnts (k, 4), k > i, form the leg of H! ,j- The number
of points in the leg of [:/L j 1s called the leg-length and is denoted by JL R
The point of H )7 furthest to the right of (¢, J) is called the hand of the
hook, while the p01nt of H , ; furthest below (Z, J) is called its foot. To
Hf j corresponds a portlon of the rim of [p] which is of the same length. It
consists of the points on the rim between the hand and the foot. To H% 3,1,
for example, there correspond the encircled points of [5, 3, 1] as follows:

I ORENORNO)
N ORNO
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The associated part of the rim, Rﬁ’j, is called a rim-hook. It is important to
notice that the result

[pI\R], ;

of removing Rf’ from [p] is again the diagram of a partition; e.g.,

J

[5, 3, INEY 2D =« = [2, 12].

The Murnaghan-Nakayama Rule is the following: Let A and p be partitions of
m, with

o = (15,282 (L kB LLomBm).
Suppose B, 2 1 and let
mo= (181282 kBTl pBmy,

Then

A A
(5.1) X} = 2 (-1)P X?T\Rij.
i, J
ni =k
Thus, by removing one occurrence of kK from p and all X rim-hooks from A, we can
express Xé in terms of characters of lower order. Repeated application of this
procedure allows us to compute Xé for any A and p.

Let us assume that § < m/2. 1In case p = (, 1™ T) we can compute xéj’m'j)
inductively by removing l-hooks from [j, m — j]. The Murnaghan-Nakayama Rule
yields
e  imed N . om
X((;],, Tm-i; = X(;? lm-r:-fj)"' X(Ii’lrfn_;-qu) if g < 2

(5.2)
7, J) — i-1,4 e . _m

Note the resemblance between (5.2) and the binomial recurrence. It is not hard
to show, using induction on m, that

Gom-g)y - (M-1Pry _(m-7r m = ry _ m-r
Gy )= (G -GIN G -G
If » = 1, (5.3) becomes
Gom=g) o (M= 1y _(m -1
(5.4)  Xin ( J ) (j-z)
(Remark: (5.4) may also be obtained from the Frame-Robinson-Thrall formula for

the degree of an irreducible representation of X,.)
When r» = 2, (5.3) can be written

(5.5) (mop = (M) - (T2,

2, 1m72 J J -4
Using the same method as that used to establish (5.3), we can show that
(F>m=3) _(m-1r -8\ _ m-r - 8 m-r-8\ _(m-7r-3s
5.6) L= 20 (j—1)+(j—r) (j—r—l)

(5500 -G )
RN e P E

152 [May



SCHUR FUNCTIONS AND FIBONACCI IDENTITIES

If s = 2, we have

(5.7) y{m-9)

r,2, 1m-p-z

]
—_—
3
I
s
!
w

P P R A I ()
and if, in addition, r = 4, then
o g - (7)1

Each of (5.3) through (5.8) yields, via (4.5), a Fibonacci identity. We
have, for example,

2]

(5.4) Z Qj[(m p 1) - (nf - ;)]Um—2j+l = V] = P,

j=0 dJ J
3
-5 j=0Qj [(m; 3) - (? : 2>]Um—2j+1 = Vrl”_zvz = P""3Uq,
m
2

itym - 17 m =7 - -
(5.8)" j;OQJ[< J ) - (,j - 8)]Um—2j+l = VI7OV,V, = P70

An expression similar to (5.6) but involving 29*! binomial coefficients may
be given for
(Fsm=4)

th’ t2’ e, tq, 1m—(t1+j..+tq)
In case t; = 2%, 1 <1 < g~ 1, this expression may be simplified to give the
expected generalization of (5.4), (5.5) and (5.8):
. (J>m=3) _ (m -2 + 1) (m -2 + 1)
(5-9)  Xa,4,8,..., 2071, 1m-2q+2 g - -2 ,

yielding the Fibonacci identity

Hiy

-9 j=oQJ[(m ) ;q ") - (m _J'zi qu)] In-24+1

-2%9+2
VT VZVH e qu

q
= pm-2 +1U2q .

If we reason similarly with rectangular partitions, i.e., partitions of the
form t* we obtain, from (4.5), the formulas

k-1

I
AR (i>Q7’tV(k—2i)t k odd,

and
L] t

% AP % Tk
2:(i)taWk—2ﬁt + (%k)QZ k even.

vE

However, these identities are well known and not especially difficult to prove
directly (see [4]).

6. Special Cases of the Second Basic Identity

If » = (n), then Xé is the identity character and (4.6) gives
(6.1) Do Vy = nllyyq.
lo]=n
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If » = 1%, then Xé = ¢(p), the alternating character. That is, e(p) = 1 if

the permutations with cycle-partition type p are even and e(p) = -1 if these
permutations are odd. From (4.6) we deduce
(6.2) D Coeolp =0 if n = 3.
[of=n
If \ = (1, n - 1), then y* is the so-called "natural'" character and xé =
vy, - 1 where p = 171272 ... »n'*. 1In other words, X4 is one less than the num-

ber of elements left fixed by permutations with cycle-partition p. From (4.6)
we have

Z CQ(YI(Q) - ]-)Vp = Qn!Un_l
lol=n
which, in conjunction with (6.1) gives

2 cle)v1(PIy = X eV + @ulUy_ 1 = n! (Uns1 + QUy-1)
lo]=n lol=n
or, finally,
(6.3) > coy1(p)Vy = nlPU, = nlViU,.
lol=n

Lastly, if A = (2, 1772), then x* is the character conjugate to the natural
character, i.e.,

X2 = e(0) (y1(p) - 1)
Then, (4.6) yields, using (6.2),
(6.4) S ocoe(@y1(p)Vp = 0 if 7 > 4.

fol=n

The following chart illustrates (6.1) through (6.4) for n = 4 in the Fibonacci
case.

p Co e(p)  vi(p) Ip colip coeplp cov1(p)Lp cpe(p)y1(p)Llp
1 1 4 1 1 1 4 4
21 .6 -1 2 3 18 -18 36 -36
2 3 1 0 9 27 27 0 0
31 8 1 1 4 32 32 32 32
4 6 -1 0 7 42 =42 0 0
sums 120 = 4!Fg 0 72 = 4\F, 0

A Generalization

Using a different approach, we generalize the identities established in
Section 6. First, several additional concepts will be introduced.
Let

o = 1M2Y2 . u¥n  and o = 1P 282 . pB»

be partitions. We define the '"'generalized binomial coefficient" (g) by

@ (2= () - ()

when the quantities on the right are ordinary binomial coefficients. (2) is

itself an ordinary binomial coefficient when p and ¢ are suitable rectangular
partitions. Clearly <z) =0 if y; < B; for some 7, 1 <7 < n.

If v; 2 B8;, 1 <7 <n, we define the partition p - o by
(7.2)  p-o=1""Fgv2 % B

Let
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1
(7.3) 2z =Z—‘; = 172" Ay iyt eyt

(2p is the order of the centralizer of a permutation of cycle-type p). It is
easy to show that

7.4 () - 2

o BgBp-0g

whenever p — ¢ is defined.

The »'M elementary symmetric function ep(@1, «.., Tm) 1is the sum of all
products of r distinct variables x; so that ey = 1 and
ep = . . Z . xilxiz co e .’X,'.,:r.
1<) <ip<ece<ipsm

The rth complete symmetric function %p(%y, ..., &) is the sum of all mono-
mials of total degree r, so that, for example,

= 23 3 2
ha(@ys Tys eees ZTy) = XY +ZZ + coe + X{Ly + oo+ X XL F oo

In particular, hg = 1 and A; = e¢;. For r < 0, it is convenient to put hr = ep
= 0.
Our generalizations of the results of Section 6 are based on the identities

p
(7.5) Q _Beltnlel
' lo?;n Be i B
and
P
(7.6) EE&QZZ’ L huka LA
' IoF;n 2o ? Ro |

We prove only (7.5); the proof of (7.6) is similar.
Our proof of (7.5) is based on (7.4) and the identity

Pp
(7.7) — = hp.
Iog;n Bo i
(For a proof of (7.7), see [2], p. 17.)
Noting that p =pp , we have
p
)

o), ) nog B P

Zp p=-0 ZUIDI‘?I Zp_g 29 |Ti="‘|°| ZI“

: -

lel=n lel=n
p

== Ty |of >
Rg

thus proving (7.5).

Observing that
ar+l — pr+l

he(a, b) = al +a* b+ -0 + b7 = =———F = Ups1s
we find, on putting ) = ay, & = by, &3 = & = --- = 0 in (7.5), the identity
p
(0)Vp Vo
R R U

[o] =7
which, using (7.3), can be written

7.9 ¥ c(?)n -

loj=n lo]!

nlegVoln - o] +1
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Likewise, since
ei(a, b, 0, ...)
ep,(a, by, 0, ...) =ab =@,
eq(a, by, 0, ...) =0, if » = 3,

I
Q
+
o
!
-

we obtain from (7.6),

egCoM PV,
(7.10) 3 ep(g>cpvp _ EoCon!Fls
[p]=n |O|
if |o| =n -1,
€5 Con ! QVs
(7.11) Y (el =
lel=n <O> lo]
if |o| < n - 2, and
e =
(7.12) % EQ<O>CQV0 0

if |o] <n - 3.
If we specialize o to be a partition of length 1, i.e., o = kl, then (g) =

yk(p), €5 = (-1)k-1, ce = (k- 1)!, and (7.9), (7.10), (7.11), and (7.12) yield

ﬂ!VkU -
(7.13) ¥ vl = — g,
[o]=n
(-1)"n! PV,
(7.14) 2 epeov(@)Vp = ———— if k=n -1,
lp]=n
(-7~ n1gy,
(7.15) Y epcovi(p)Vp = ————— if k=7 - 2,
and lof=n
(7.16) 3 e ey @)V, = 0 if k < m = 3,
lel=n

which are generalizations of (6.3) and (6.4).
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