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We begin with the simple observation that 4* (2178) = 8712. That i s , when 
2187 is multiplied by 4, the result is 8712 which is 2178 with the digits 
reversed. Since 4 is the multiplier that produces the reversal of digits, we 
call 2178 a 4-vevevse multiple. More generally, let x be an n-digit, base g 
number 

n- 1 
(1) x = £ a^gi 

i= 0 
with 0 < CLI < g and an_i * 0. Then x is called a k-vevevse multiple if, for 
some integer k> 1 < k < g9 

n- 1 
(2) kx = £ ^n-i-iQ1-

i= 0 
Previously, most work on /c-reverse multiples has focused on either finding 

all those less than a given m [1], or characterizing, for a given n, those with 
n-digits. This latter problem seems to be quite difficult and has been 
completely solved only for the 2- and 3-digit cases (see [1] and [3]). 
Additionally, various schemes have been advanced for calculating these 
multiples (see [2] and [3]). Beyond this, it has been noted that once a 
^-reverse multiple is known, it may be used to create others. For example, it 
is easily verified that 21782178 and 21978 are also base 10, 4-reverse 
multiples. 

What has not been discussed previously is how to find all /(-reverse multi-
ples once those with a small number of digits are known. For example, in base 
11, 118 and 1298 are 7-reverse multiples. While it is clear that 118118 is a 
7-reverse multiple, it is not as obvious that 11918 is also such a multiple. 
This question, of how to form multiples having a large number of digits from 
those with a small number, is the focus of our discussion. As we will see, the 
solution has a graphic representation. 

We begin by supposing that x is an n-digit, base g9 ^-reverse multiple. 
From (1) and (2), we obtain the following set of equations by comparing corre-
sponding digits of kx: 

ka.Q = an.l + r0g 
kax + r0 = a„_2 + vxg 

(3) ka^ + p._! = a n _ w + vtg 

kan_z + rn_3 = ax + rn_2g 
kan-l + rn-2 = a0 

where 0 < v^ < g for i - 0, ..., n - 2. The last equation implies a§ * 0 since 
an-l * 0- The z>£ ! s are the so-called "carry numbers." As we will see, these 
numbers determine the character of ̂ -reverse multiples. 

To determine whether there are any fc-reverse multiples for a given g and k, 
we consider the equations in (3) two at a time. For convenience, let T-\ = rn_ j_ 
= 0. At the (i+l) s t step, i - 0, 1, ..., we examine the pair of equations 
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(4) <̂  

'^n-l-t + Vn-Z-i = O-i + *n-l-i9 

where ^ -1 and Pn_^_^ are known from the previous step. That is, we seek non-
negative integers a^, an-i-i9 v^ , and ^n-z-i which, in addition to (4), satisfy 

(5) 

and 
(6) 

(0 < aQ, an.l 

{at < g, i = 0, 1, 

v- < g9 i = 0, 1, 
The equations in (4) along with the inequalities in (5) imply tighter- restric-
tions in (6). That is the content of the following lemma. 

Lemma 1: Suppose there exist nonnegative integers which satisfy (4) and (5) 
for i = 0, 1, ..., n - 1. Then the following hold: 

(0 < P 0 

(7) 
\Vi < k for i = 0, ..., n - 2. 

Proof: Solving (4) for at gives 

(8) at = (kr^g - kri.l + rn.l.ig - rn_2_f)/(k2 - 1). 
Letting i = 0 and using P_1 = Pn_1 = 0 in (8) gives 

aQ(k2 - 1) = kr0g - rn_2. 
Hence, 0 < r0 since 1 < k9 0 < aQ5 and 0 < Pn-2' 

To show the second part of (7), suppose ^i-\ < k; note that when i = 0, the 
supposition is valid. Then from the general equation in (3) we have 

vtg < kdi + ri_i < kai + k = k{at + 1) < kg 
and hence v^ < k. D 

One convenient way to proceed is to look for nonnegative integers ai and 
an-\-i satisfying (5) such that 

(kat + r i . l E an-i-i (mod g) 
(9) < 

10 < at + rn_l_ig - kan.l. i < k 
where ^i-\ and Pn_^_^ have been determined in the previous step. If the afs 
exist, then r^ and vn_^_i can be found by (4) % 

ivi = (kat + r i . l - an-l.i)/g 
(10) 1 

irn-2-i = ai + vn-\-i9 ~ kan-i-i. 
The restrictions in (9) guarantee the r!s in (10) are nonnegative. 

The above procedure is successful when, at each step, there are nonnegative 
integers ai and an_x_^ which satisfy (5) and (9). The following graphical 
notation will be convenient. If r„_2--z> vi-\> an-l- i> ai * Tn-2-i* an<^ Ti s a t~ 
isfy (4), (5), and (7), then we will write 

(11) 

O n - W * ri-0 
(an-l~i> ai) 

&n-2-i> p;) 
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and conversely. Thus, we hope to generate a graph, or more precisely, a rooted 
tree in which a path from the root to a node has the following form and labels: 

(0, 0) 

(a„_i, a0) 

(an-2> CL\) 

On-3> ^l) 
(12) I 

We will use this notation in the examples below. Since 0 < v^ < k9 there can 
be at most k2- different pairs of P^ T s used as node labels in the tree. If a 
node is labeled with an P-pair that has already appeared in the tree, the tree 
can be pruned after this node, since no new information will be obtained beyond 
this point. When needed for analysis, a pruned tree can be extended by repli-
cating earlier sections of it. Before proceeding further with the exposition, 
we look at the tree for the 4-reverse multiple, 2178. 

Example 1: g = 10, k = 4. 
Let us begin by considering (9) with i = 0. The various possibilities are: 

OLQ an-\ E ^a0 a0 ~ ^an-\ 

4 
8 
2 
6 
0 
4 
8 
2 
6 

-15 
- 3 0 

- 5 
- 2 0 

5 
- 1 0 
-25 

0 
-15 

Only (ZQ = 8 satisfies the required condition 

0 < a0 - 4an_x < k = 4. 

Using (10), it can be shown that Pn-2 = 0 and PQ ~ 3. Continuing in this man-
ner and using the above notation, the following is obtained: 

(7, 1) 

( 3 , 
(8, 2) 

( 0 , 
0) / 
( 0 , 0) 

( 0 , 

( 0 , 

( 3 . 

0) 

^0) 

( 0 , 

0) 
(2, 8) 

3) 
(1, 7) 
3) 

^ \ (9, 
( 3 , 3) 

(2, 8) 
3) 
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The tree is not continued any further since (0, 0), (0, 3), and (3, 3) have 
appeared previously. The careful reader will observe that 

(0, 0) 
| (0, 0) 

(0, 0) 

appears at the end of the tree, but not initially. This will always be the 
case since the equations in (4) are satisfied by the trivial or zero solution. 
Although P0 * 0, the p-pair (0, 0) is permissible after the first step. D 

The following question arises immediately. How do we use such a tree to 
find /c-reverse multiples? The next two theorems provide answers. 

Theorem 1: For a given g and k, suppose a tree of the form (12) exists; that 
is, suppose nonnegative solutions to (4), (5), and (7) exist. Then there is an 
n = 2i + 2-digit number satisfying (2) if and only if rn-2-i = ri • I n this 
case, x is given by 

(15) x = an_3_an_2 ... &n-l-iai ••• aiao-

Proof: In forming (12), the equations to be considered at the (i+l)s t step are 

+ ri_l = an_l_i + rtg 

kan_l_i + rn_2_i = at + rn_l_ig 

The two quantities in bold type are the P!s to be determined at this step. If 
n - 2i + 2, then this is the last set of equations to be considered. Since 

n - 2 - i = (2i + 2) - 2 - i = i, 
rn„2-i= vi and the conclusion follows. Conversely, if Tn_2-i = vi > then we 
may stop with (16) by letting n - 2 - i = i to give n = 2i + 2. • 

Corollary 1: For base g, suppose there are /(-reverse multiples. Let n be an 
even number. Then there exists an n-digit multiple if and only if the corre-
sponding infinite tree contains a path of length n/2 from the root to a node 
designated by (u, u). 

Proof: This is simply a restatement of Theorem 1. Q 

Example 1 continued: By Corollary 1, to find all base 10, 4-reverse multiples 
with an even number of digits, we traverse the tree in (14) stopping at nodes 
of the form (u, u). Thus, we see that (3, 3) gives rise to a 4-digit multiple. 
To find this number, we use (15) of Theorem 1. We read it off from the a-
pairs, starting at the root, reading down the left-hand side and then back up 
the right. Thus, we find that 2178 is a 4-reverse multiple. So, too, are the 
following numbers: 

219978, 21782178, 21999978, 
2178002178, 2197821978, 2199999978. 

Of coxrrse, there are infinitely many, but these are the ones with the least 
number of even digits. It should be remembered that the tree is actually infi-
nite, and that pruned branches may be extended when needed to obtain additional 
desired numbers. 

Theorem 2: For a given g and k , suppose a tree of the f o rm (12) exists; that 
is, suppose nonnegative solutions to (4), (5), and (7) exist. Then there is an 
n - 2i + 3-digit number satisfying (2) if and only if 

(k - \)\{rn.2.ig - rt) and 0 < (r„-2-i^ " *i) I & ~ D < 3-
In this case, x is given by 

(16) 
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(17) x = an_1an_2 ... an^Y-i^ai ••• &i&o 

where M = (rn_2-i9 ~ *{,) / (k ~ D • 

Proof: If n = 2i + 3 , then there are an odd number of equations in (3). After 
(i+ 1) steps, we are left with 

(18) kai + l + vi = an_2-i + n+i9-
Since n - 2 - i = i + l, (18) becomes 

(19) kai + l + vi = ai + l + rn_2_ig. 

Because v^ and ¥n_2-i are already known, we must have 

(20) ai + l = (r n _ 2 -^ - ^)/(fe - 1). 

Thus, after determining vn-2-i and i3^ , we can stop if and only if 

(k - l)|(r„_2_^ - r^) and 0 < {vn.2-i3 " ^ ) / ( ^ ~ D <. #• 

When this occurs, x is given by (17). Q 

In order to apply Theorem 2 to a tree, we must check at each step to see if 
(k ~ I)\(rn-Z-z9 ~ vO a n d °  - (rn-2-i9 ~ ri)I(k - 1) < g. Thus, in Example 1, 
since 3|(3 • 10 - 3) and 0 < (3 •10 - 3)/3 < 10, the r-pair (3, 3) yields the 4-
reverse multiple 21978. The following theorem simplifies this tedious checking 
process. 

Theorem 3: For a given g and k, suppose a tree of the form (12) exists; that 
is, suppose nonnegative solutions to (4), (5), and (7) exist. Then there is an 
ft = 2i + 3-digit number satisfying (2) if and only if the graph contains 

-2-i> n ) 

(an-2-i> ai+0 

(ri9 rn.2_i). 

Further, when this occurs, an-2-i = ai+i = M = (rn.2-i9 - vt)/(k - 1). 
an.2-i = ai+l = M = (rn.2-i9 - i-)I(k - 1). 

The desired ft-digit number x is given by (17). 

Proof: Suppose there is a 2i + 3-digit A:-reverse multiple. The first piece of 
the above graph exists by assumption. We must show the existence of the second 
piece. Equations (4) at the (i + 2 ) n d step are 

(kai + l + vt = an.2-i + ri + lg 
(21) < 

\kan-2-i + Vn-S-i = <*i + l + Iin-2-i9-
From (19) and (20) in the proof of Theorem 2, we have 

kM + rt = M + rn.2-i9-

Thus, one solution to (21) is 

an_2-i = M; ai+l = M 

and the result follows. 
Now suppose for a given g and k there exists a graph containing 

O n 
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By hypo thes i s , (4) becomes 
kai+l + vt = a n _ 2 _ i + rn_2_ig 

kan_z_i + vi = a i + 1 + rn_1_igB 

Subtracting one equation from the other gives OLi + i = a n _ 2 - ̂- From this, it fol-
lows that (fc - 1) \(rn-2-iG ~ vi ) a n d an-2--£ = a-i + l = (rn-2-iG ~ ^ ) / ( ^ " 1)' s o 

by Theorem 2 there exists an n = 2i + 3-digit /(-reverse multiple. • 

Corollary 2: For base ^, suppose there are fc-reverse multiples. Let ft be an 
odd number. Then there exists an ft-digit multiple if and only if the corre-
sponding infinite tree contains a path of length (ft - l)/2 from the root to 
nodes designated by (u, v) followed by (v, u). 

Proof: This is simply a restatement of Theorem 3. D 

The importance of Corollaries 1 and 2 cannot be overstated. Suppose it is 
known that for a given g there are /(-reverse multiples. Then we use the 
procedure suggested by (9) to create a pruned tree. By traversing the tree, 
replicating earlier sections when necessary, and stopping at those pairs which 
have the form given in the above corollaries, we are able to find all /(-reverse 
multiples for a given ft. This procedure is illustrated in the following 
example. 

Example 2: g = 19, k = 14. 
The tree in this case is: 

(0, 0) 
| (1, 15) 

(1, ID 
| (2, 17) 

(8, 13) 
| (11, 8) 

(6, 6) 
| (8, 11) 

(13^8) 
(17, 2) / X^ (18, 17) 

(11, 1) (12, 12) 
(15, 1) / \ ( 1 6 , 16) | (17, 18) 

(0,0) (1, 11) (8, 13) 
<°» °) X \ (l, 15) 

(0, 0) (1, 11) 

By Corollaries 1 and 2, we can traverse the tree stopping at (6, 6), (12, 12), 
(11, 1), and (0, 0). The first two nodes give 14-reverse multiples with an 
even number of digits, while the third gives rise to those with an odd number 
of digits. The pair (0, 0) of course always accounts for multiples with both 
an even and an odd number of digits. So there are 6-, 10-, 11-, 12-, ...-digit 
14-reverse multiples. 

Those with the least number of digits are: 

1 2 11 8 17 15 
1 2 11 8 18 17 11 8 17 15 
1 2 11 8 17 16 2 11 8 17 15 

(22) 
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It would be difficult, using these, to see that 

1 2 11 8 18 17 11 8 18 17 11 8 17 15 
and 

1 2 11 8 17 16 2 11 8 18 17 11 8 17 16 2 11 8 17 15 

are also ^-reverse multiples. Yet, using the tree, it is clear that they are.Q 
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