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PROBLEMS PROPOSED IN THIS ISSUE

H-469 Proposed by H.-J. Seiffert, Berlin, Germany

Define the Fibonacci polynomials by

Fo(x) =0, Fl(x) =1, F, (x) = aan_l(x) + Fn-Z(x)’ for n =2 2.

Show that for all positive integers # and all positive reals x,

km
2 2n-2 CcoOs Py
@ ey TR L, DR N
2n-1 k=0 22 + 4 cos? -1
1 x(xz + 4) 2n~-1 (_1)k+n
(®) Py () 4n km®
2n k=0 %2 + 4 cos? =—
2n
H-470 Proposed by Paul S. Bruckman, Edmonds, WA

Consider the polynomial

r-1

(D G.(2) = z7 - }: akzp_l’k, r 2 1, the a;'s complex.
k=0
Consider the » distinct sequences (Uéfb):=0 satisfying the common
relation:
(2) CuEYW) =0, G =1, 2, ooy 231 =0, 1,
The sequences are specified by the initial values:
(3) U = Sy =0, 1,y ey v =1, §=1, 2, ..., 2
Form the rx » matrix U;P% defined as follows:
(r) ( (r)
UpRe-1,1 U120 oor USieoy, o
(r) _Ufzz-,k)r~2,l Z.]r(zrjr)r-Z,Z s [.];2??—2,24 ()
(4) uto= |t : : = (Wysr-1, )
() 7 () .
Unrjrl,l Unil,Z Uél:-)l, r
(r) (r)
U U - U
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ADVANCED PROBLEMS AND SOLUTIONS

Therefore,

ap ai 2%} Ap-2 ap-1 |
0 . 0
@ _ |0 1 0 0 0
G n = :
0 0 0 ... 0 0
L 0 0 0 ... 1 0 ]

(A) Find the characteristic polynomial p, (z) of UY‘);
(B) Prove that (UY))” = Uflp), no=1, 2, «..3
(r) |

(C) Let there be r sequences (#y,';),., satisfying the common recurrence in
(2), but the arbitrary initial values. Form the rx »r matrix

B = (Ee )
Prove that
W1 = g, 0= 1, 2,

SOLUTIONS
Woops

H-451 Proposed by T. V. Padmakumar, Trivandrum, South India
(Vol. 29, no. 1, February 1991)

If p is a prime and x and a are positive integers, show

(x—;ap)_ (;) = a (mod p).

Editorial Note: Many readers pointed out that this problem was published in an
earlier issue of this Quarterly as B-643. Also, this result readily follows
from B-666. In spite of this, we offer one more solution. i

Solution by Guo-Gang Gao, University of Montreal, Montreal, Canada

Lemma 1: Let 2 be a positive integer. If z + 1 Z 0 (mod p), then

1

(pf ) =0 (mod p).

Proof: 1f 2 + 1 # 0 (mod p), then only one of 2z, 2 -1, ..., 2 — p + 2 must be

divisible by p, by the pigeonhole principle. Hence, ( ?:1) always contains a
factor of p because p is a prime, and the lemma follows. [J

Lemma 2: Let 2z be a positive integer. Then, for 1 < k <p -1,

(ZP p_ -k k- l)

"

0 (mod p).
Proof: Since zp - k-1-(p-k) = (g-1p-1, z2p-k-12 (z-1), and
0 <p -k < p, thus
(zp—k-l) (gp - k - 1!
p-k Gp -k -1-p+Rk)!(p-Kk!
always contains a factor of n. i.e.. the lemma follawe. Tl
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- Lemma 3: Let 2 be a positive integer. Then
o))
p-1

Proof: (a) 1If z = 1, it is trivial; (b) let z > 1, then by repetitively apply-
ing Lemma 2, and

()= %)~ ()

(zp - l) = (Zp - 2> (mod p) + (Zp - 2) (nod p)

1

1 (mod p).

we have

p-1 p-1 p -2
= (pr - 23> (mod p) + (pr - 33) (mod p)

= (zp(; p) (mod p)

= 1 (mod p).

We now come to the proof of the statement. By repetitively applying

)= ")+ ()

we have
(x+ap)_(x)___(x+(a—l)p>_(x>+ ap- 1 (x+7,>
p pr, p Pl @ m L
=i B! (x+7,>
i1 i=G-vp P -1
For any fixed § (1 < J < a), x + 7 can be one of p consecutive integers,
x+ (- Dp, ..., x+ Jp - 1. Of these p consecutive integers, there always

exists only one x + 7 such that x + 2 + 1 = 0 (mod p), by the pigeonhole prin-
ciple. Therefore, by Lemmas 1 and 3, for any fixed J,

jp-1 iy
i= 5;1Jp (g - i) =1 (mod p),
that is,
(.x' ‘;ap) - ('Z) = a (mod p),

completing the proof. [

Also solved by K. Atanassov, P. Bruckman, P. Filipponi, R. Hendel, J.
Kostal, Y. H. H. Kwong, B. Prielipp, H.-J. Seiffert, and the proposer.

Divide and Conquer

H-452 Proposed by Don Redmond, Southern Illinois U., Carbondale, IL
(Vol. 29, no. 2, May 1991)

Let p,(m) denote the mth r-gonal number m/2){2 + (» - 2)(m - 1)}. Char-
acterize the values of »r and m such that
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m

p, (m) | 3 p, (k).
k=1

Solution by C. Georghiou, University of Patras, Patras, Greece

m
Let S,(m): = Y p,(m). Then it is easy to see that
k=1

m(m + 1)

Sp (m) = 12

[(r = 2)(2m+ 1) - 3(r - 4)].

Now, since p,(1)=1 and S,(1) =1, the given property is trivially true for all
r and m = 1. So, we are interested in the case m > 1 (and, of course, r > 1).
Then the given property is true only if

r =2and m Z 1 mod 2 or » =3 and m = 1 mod 3.
Indeed, we have
Sz(m)/pz(m) = (m+ 1)/2 and 53(m)/p3(m) = (m+ 2)/3.
It remains to show that pr(m)ISr(m) for » > 3 (and m > 1). We have
(m+ 1)[(r - 2)m - (r - 5)]
3[(r - 2)m - (r - 4)]

Since 3 must divide either factor of the numerator, we have the following three
possibilities: (i) m = 3n - 1; (ii) m = 3n + 1; (iii) r = 3s - 1 and m = 3n.

S, (m)/p, (m) =

In Case (i), we get
S,(m)/p,(m) =n+n/[(Br - 6)n-2r - 6)],

and since 0 < n/[(3» - 6)n — (2r — 6)] <1 for » > 0 and » > 3 we conclude that
p,(3n - 1)fS,(3n - 1) for any r > 3 and any n > 0.

In Case (ii), we get
S.(m)/p,(m) =n+ [(2r - 3)n + 2]/[(3r - 6)n + 2],

and it is easy to see that the second term lies (strictly) between O and 1 for
r >3 and n > 0.

Finally, in Case (iii), we get
S,(m)/p,(m) =n+ [3s - 2)n - (s - 2)1/[(9s - 9)n - (3s = 5)],
and again the second term is positive and less than unity for any » > 0 and
s > 1.
Also solved or partially solved by P. Bruckman, N. Jensen, S. Rabinowitz,
and the proposer.

Sum Formulae!

H-453 Proposed by James E. Desmond, Pensacola Jr. College, Pensacola, FL
(Vol. 29, no. 2, May 1991)

Show that for positive integers m and 7,

Liom+ 1)n

m
7 = Z (_l)(n+l)(m-j)]_'/2nj + (_l)m(n+1)
n .

j=1
and

F m .
_%ﬂﬂ =3 (_lyn+1xm—J)EN2j_1%
n J=l
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Solution by Stanley Rabinowitz, Westford, MA

Lemma:
S( b ) i pIF (_l)arn+2Fan+b - I’”+1Fa(n+1)b - (—1)aP2Fb +7rF, 3
n, a, b, r . = .
s i~ aj+b (._1)ar.2_l,,La+l

Proof: Let
LN x" - 1
Gz, n) = Y ad = x( )

J=1 x -1
Now . .
jF j(an+b — Ba3+b> ch( a)j Bb (rga)j
. = ——— | = —=(ro - —= .
AL 75 5 75
Thus,
b b
S(n, a, b, r) = %G(raa, n) - %G(I’Ba, 7)
_ SLE a<r”a“” - 1) _ B_b pga<rn8an _ 1>
S5 T\ e o 1 /5 g% - 1
=L paa+b<rn°‘an - 1> _ 8a+b<rn8an - l>]
/51 rad - 1 rg% -1
B _Z’_ ’OL(’Hb(l/’Ba - 1)(Pnaan -1) - Ba+b(l,,aa - 1) (I’”Ba” - l)]
~ /5L (rod - 1) (rB% - 1)

-I,n+1(8aaa(n+1)+b — aaBa(”+l)+b) — I’”(oca(”+l)+b - Ba(n+l)+b)
_ I‘(OLa+bBa _ OLaBa+b) + gatb - Ba+b

r2(aB)? - r(a%+ g%y +1

Gl

'rn+1(u5)a (uan+b - Ban+b) _ r”(ota(”+1)+b _ Ba(n+1)+b)

r - r(aB)? (0P - gP) + (a?¥P - go*P)

V5 L (aB)? 72 - r(a%+ 8%) + 1

rl:rmﬂ (D) Fpyp = P Eyna ey = 2 (=1)7Fp + Fa+b:l
(-1)%r2 - pL,+1

(-1 rn+2Fan+b - rn+1péz(n+ D+b ~ (_1)aZ’2Fb +rip

(-1)%r% - pL,+1

which was to be proved.

Using this lemma, we have
m .
_l(‘l)(n+l)(m_J)Fn(2j—l)

.

LD sn, 2n, -n, (~1)7+1)

(~1)(n+ m+2) Fom -n - (~1) (r+D(m+ D) Fonima)-n ~Fon + (—1)n+1Fn

(_l)(n+l)m
2 - (_l)n+1L2n

Fn(2m—l)+(—l)nFn(2m+1)
2+ (-1)" Ly,
where we have used the fact that F._, = (—l)”+1F,,L.
Thus, it remains to prove that our answer,

n
(1) i (—l)(n+1)(m_j)F ) - Fn(Zm -t (-1) Z'_’n(2m+ D
7= n(24 -1 2 + (_l)ann
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is equivalent to the proposer's answer of F,,, /L, . Cross multiplying, we see
that this would be equivalent to showing that

(2) Fn(zm'l)Ln + (—l)nFn(2m+D = 2F9p, + (_l)nFerm Loy.
Applying the well-known identity,
Foly = Fpyy + (F1)YFpy
to equation (2), we find that all the terms drop out; hence, equation (2) is
true. Thus, our answer (1) is equivalent to the proposer's answer.

In the same manner, we can prove a similar lemma for the Lucas numbers:

n .
T(n, as by, v) = 3, vl i4p
=1

aPG(rad, n) + BPG(rp%, %)

NyaAn 1 ph an _ 1
= ublﬂua<£i——1—> + Sbl"ﬁa<—8—‘ )

ra¢ g% - 1
- P—aaw(r”aan -_1_> + Ba+b(r”8“” - 1>
L ra¢ - 1 rg® - 1

(@D (g% - 1) (o - 1) + B0 (pa? - 1) (2"B%" - 1)]
L (ra® - 1) (rp% - 1)

‘2,,n+1(8aua(n+1)+b+ OLaBa(n+l)+b) _ Pn((xa(n+l)+b + Ba(n+1)+b)
_ I‘(ota+bBa+ aa8a+b) + (OLa+b+ Ba+b)

r?2(aR)® - r(af+ R4 +1

_Z[‘n+1(0LB)a (aan+b + Ban+b) - r'”(ota(”+1)+b + Ba(n+1)+ b)
- r(aB)?(af +8P) + (adtP+peth)

(aB)er2 - p(a+g3) + 1

=r

(—1)arn+2Lan+b - I’n+1La(n+1)+b - (—l)alqub +rLgyp
(-1)¢r2 - pL,+1 )

Using this result, we have

mn .
'21 (~1)(n+DOn-3) Lon;
i=

= (-1)"+DMP(n, 2m, 0, (17D
(_1)(n+1)(m+ 2) Lomn = (_1)(n+1)(m+ 1)L2n(m+l) - Lo+ (_l)n+1L2n]
2 - (_l)n'i'len

= (_1)(n+l)m[

Lomn + (=1)"Lopne1) = 2(=1)FDm 4 ()n+ Dm+ D,
2 + (-1)"Ly,

To show that our answer is equivalent to the proposer's, we must show that
n +1 —-1Yn+D(m+1D
Lomtvn - jyneeny o Z2m T D Dongren) - 2(-D)\*Dm 4 (DD 1y,
Ly, 2 + (-1)"Ly,

or, equivalently,
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2poneny = 2-D"FVL 4 (1) Do, Loy p = (DMFDERL L,

= LyLomy + (D" LyLongreny = 2(-17FDL 4 (-D)0DOD g,
Again, this falls out by applying the well-known identity,

Lply = Lpyy + (D7 1gy.

X+

Also solved by P. Bruckman, N. Jensen, B. Prielipp, H.-J. Seiffert, and the
proposer.

Editorial Note: Several readers have pointed out that H-462 was published
earlier as H-449.

Hokoskock ok
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