ON THE *r*th-ORDER NONHOMOGENEOUS RECURRENCE RELATION AND SOME GENERALIZED FIBONACCI SEQUENCES

Ana Andrade

G.V.M.'s College of Commerce and Economics, Ponda, Goa, India

S. P. Pethe

Goa University, Taleigao, Goa, India (Submitted October 1990)

1. Introduction

Consider the nonhomogeneous recurrence relation

(1.1)
$$G_n = G_{n-1} + G_{n-2} + \sum_{j=0}^{k} \alpha_j n^j$$

with $G_n = 1; \ C_n = 1$

 $G_0 = 1; G_1 = 1.$

In [1], Asveld expressed G_n in terms of Fibonacci numbers F_n and F_{n-1} and in the parameters α_0 , α_1 , ..., α_k . He proved that

(1.2)
$$G_n = (1 - G_0^{(p)})F_n + (-G_1^{(p)} + G_0^{(p)})F_{n-1} + G_n^{(p)},$$

where $G_n^{(p)}$ is a particular solution of (1.1).

In this paper, we generalize this result in two ways: First, we generalize Asveld's result by taking the second-order recurrence relation as

$$T_{n} = PT_{n-1} + QT_{n-2} + \sum_{j=0}^{k} \beta_{j} n^{j}$$

with

$$T_0 = a; T_1 = b.$$

Second, we prove similar results for the third-order and the r^{th} -order recurrence relations; cf. also [6].

In Section 2, we prove the results for the generalized second-order recurrence relation. In Section 3, we prove the theorem for the third-order recurrence relation. In Section 4, we mention the results for the p^{th} -order recurrence relation.

2. Generalized Second-Order Relation

Let the second-order nonhomogeneous recurrence relation be given by

(2.1)
$$T_n = PT_{n-1} + QT_{n-2} + \sum_{j=0}^{k} \beta_j n^j$$

with

 $T_0 = a; T_1 = b.$

Let the homogeneous relation corresponding to (2.1) be written as

 $(2.2) S_n = PS_{n-1} + QS_{n-2}$

with the same initial conditions as for T_n , viz.,

 $S_0 = a; S_1 = b.$

Whenever necessary, we denote the sequence S_n with the initial conditions $S_0 = a$, $S_1 = b$ as $S_n(a, b)$. It is well known that the solution of (2.2) is given by

256

ON THE rth-ORDER NONHOMOGENEOUS RECURRENCE RELATION AND SOME GENERALIZED FIBONACCI SEQUENCES

(2.3)
$$S_n(a, b) = \frac{1}{\alpha_2 - \alpha_1} [(aP - b)(\alpha_1^n - \alpha_2^n) - a(\alpha_1^{n+1} - \alpha_2^{n+1})]$$

where α_1 and α_2 are distinct roots of the characteristic equation of (2.2); see [5].

Note that

(2.4) $\alpha_1 + \alpha_2 = P; \ \alpha_1 \alpha_2 = -Q.$

Also,

(2.5)
$$S_n(1, 0) = \frac{1}{\alpha_2 - \alpha_1} [P(\alpha_1^n - \alpha_2^n) - (\alpha_1^{n+1} - \alpha_2^{n+1})],$$

(2.6)
$$S_n(0, 1) = -\frac{1}{\alpha_2 - \alpha_1} [\alpha_1^n - \alpha_2^n],$$

and

$$(2.7) \qquad S_n(1, 1) = \frac{1}{\alpha_2 - \alpha_1} [(P - 1)(\alpha_1^n - \alpha_2^n) - (\alpha_1^{n+1} - \alpha_2^{n+1})]$$

Theorem 2.1: The solution of (2.1) is given by

$$T_n = S_n(a, b) - S_n(1, 0)T_0^{(p)} - S_n(0, 1)T_1^{(p)} + T_n^{(p)},$$

where $S_n(a, b)$, $S_n(1, 0)$, and $S_n(0, 1)$ are given by (2.3), (2.5), and (2.6), respectively, and $T_n^{(p)}$ is a particular solution of (2.1).

Proof: The solution of (2.1) is given by

 $T_n = T_n^{(h)} + T_n^{(p)},$

where $T_n^{(h)}$ is the solution of (2.2) and $T_n^{(p)}$ is a particular solution of (2.1). Now

(2.8)
$$T_n = c_1 \alpha_1^n + c_2 \alpha_2^n + T_n^{(p)}$$
,
where

$$T_0 = a; T_1 = b.$$

Therefore,

(2.9)
$$\begin{cases} c_1 + c_2 = \alpha - T_0^{(p)}, \\ c_1 \alpha_1 + c_2 \alpha_2 = b - T_1^{(p)}. \end{cases}$$

Solving (2.9) simultaneously, we get

$$c_1 = \frac{(a - T_0^{(p)})\alpha_2 - b + T_1^{(p)}}{\alpha_2 - \alpha_1} = \frac{(a - T_0^{(p)})(P - \alpha_1) - b + T_1^{(p)}}{\alpha_2 - \alpha_1}.$$

Hence,

(2.10)
$$c_1 = \frac{\alpha_1(T_0^{(p)} - a) + aP - b - PT_0^{(p)} + T_1^{(p)}}{\alpha_2 - \alpha_1}.$$

Similarly,
(2.11) $c_2 = \frac{\alpha_2(-T_0^{(p)} + a) - aP + b + PT_0^{(p)} - T_1^{(p)}}{\alpha_2 - \alpha_1}.$

(2.11)
$$c_2 = \frac{\alpha_2(-T_0^{(e)} + a) - aP + b + PT_0^{(e)} - T_1^{(e)}}{\alpha_2 - \alpha_1}$$

Thus, by using (2.10) and (2.11) in (2.8), we have

$$\begin{split} \mathcal{T}_{n} &= \frac{1}{\alpha_{2} - \alpha_{1}} [(aP - b - PT_{0}^{(p)} + T_{1}^{(p)}) (\alpha_{1}^{n} - \alpha_{2}^{n}) \\ &\quad - (a - T_{0}^{(p)}) (\alpha_{1}^{n+1} - \alpha_{2}^{n+1})] + T_{n}^{(p)} \\ &= \frac{1}{\alpha_{2} - \alpha_{1}} \{ [(aP - b) (\alpha_{1}^{n} - \alpha_{2}^{n}) - a (\alpha_{1}^{n+1} - \alpha_{2}^{n+1})] \\ &\quad - [P(\alpha_{1}^{n} - \alpha_{2}^{n}) - (\alpha_{1}^{n+1} - \alpha_{2}^{n+1})] T_{0}^{(p)} \\ &\quad - [-(\alpha_{1}^{n} - \alpha_{2}^{n})] T_{1}^{(p)} + T_{n}^{(p)}. \end{split}$$

1992]

ON THE rth-order Nonhomogeneous recurrence relation and some generalized fibonacci sequences

By using (2.3), (2.5), and (2.6) we finally obtain

$$(2.12) \quad \mathcal{I}_n = S_n(a, b) - S_n(1, 0)\mathcal{I}_0^{(p)} - S_n(0, 1)\mathcal{I}_1^{(p)} + \mathcal{I}_n^{(p)}.$$

Remarks:

(1) Note that, if $\alpha = 1$, b = 1, P = 1, Q = 1, (2.12) reduces to Asveld's result given by (1.2). Here we use the fact that

$$S_n(1, 0) = -F_{n-1} + F_n = F_{n-2}, \quad S_n(0, 1) = F_{n-1}, \quad S_n(1, 1) = F_n.$$

(2) To get a complete solution of (2.1), let the particular solution $T_n^{(p)}$ be given by

k

$$T_n^{(p)} = \sum_{i=0}^{\kappa} A_i n^i.$$

ν

Then, from (2.1) we get

k

or

$$\sum_{i=0}^{k} A_{i}n^{i} - P \sum_{i=0}^{k} A_{i}(n-1)^{i} - Q \sum_{i=0}^{k} A_{i}(n-2)^{i} - \sum_{i=0}^{k} \beta_{i}n^{i} = 0$$

$$\sum_{i=0}^{k} A_{i}n^{i} - \sum_{i=0}^{k} \left(\sum_{k=0}^{i} A_{i}\binom{i}{k}(-1)^{i-k}(P + Q2^{i-k})n^{k}\right) - \sum_{i=0}^{k} \beta_{i}n^{i} = 0.$$
each $i = 0, \leq i \leq k$, we have

For each i ($0 \le i \le k$), we have

(2.13)
$$A_i - \sum_{m=i}^k \gamma_{im} A_m - \beta_i = 0$$

where, for $m \geq i$,

$$\gamma_{im} = {m \choose i} (-1)^{m-i} (P + Q2^{m-i}).$$

From the recurrence relation (2.13), A_k , ..., A_0 can be computed where A_i is a linear combination of β_i , ..., β_k . To get a more explicit solution as in Asveld [1], we put

$$A_i = -\sum_{j=i}^k a_{ij} \beta_j,$$

where a_{ij} are as defined below. Then we get the following solution for (2.12):

$$T_{n} = S_{n}(a, b) + S_{n}(1, 0)\lambda_{k}^{0} + S_{n}(0, 1)\lambda_{k}^{1} - \sum_{j=0}^{k} \beta_{j}r_{j}(n),$$

where

.

.

$$\lambda^{0} = \sum_{j=0}^{k} \beta_{j} a_{0j}, \quad \lambda^{1}_{k} = \sum_{j=0}^{k} \beta_{j} \sum_{i=0}^{j} a_{ij}, \text{ and } r_{j}(n) = \sum_{i=0}^{j} a_{ij} n^{i}.$$

Note that

$$\gamma_{ii} = P + Q$$
, $a_{ii} = \frac{1}{P + Q - 1}$, and $a_{ij} = -\sum_{m=i+1}^{J} \gamma_{im} a_{mj}$, $j > i$.

(3) If a = 2, b = 1, P = 1, and Q = 1, the sequence $S'_n(a, b)$ reduces to the Lucas sequence L_n . Then (2.12) reduces to

$$T_n = L_n - T_0^{(p)} F_n + (T_0^{(p)} - T_1^{(p)}) F_{n-1} + T_n^{(p)}.$$

(4) We are grateful to the referee for pointing out references [6], [7], and [8]. It should be noted that our results are more general than those in [6]. One can also prove results similar to those in [6] and [7] without much difficulty.

258

3. Third-Order Recurrence Relation

Let the third-order recurrence relation be given by

$$(3.1) T_n = P_1 T_{n-1} + P_2 T_{n-2} + P_3 T_{n-3} + \sum_{j=0}^{k} \beta_j n^j.$$

Let the homogeneous relation corresponding to (3.1) be written as

$$(3.2) S_n = P_1 S_{n-1} + P_2 S_{n-2} + P_3 S_{n-3}$$

Denote the sequence S_n by S_n^1 , S_n^2 , S_n^3 , when

- $(3.3) \quad S_0 = 0, \ S_1 = 1, \ S_2 = P_1,$
- (3.4) $S_0 = 1$, $S_1 = 0$, $S_2 = P_2$, and
- $(3.5) \quad S_0 = 0, \ S_1 = 0, \ S_2 = P_3,$

respectively.

with

wher

Denote the sequence T_n with initial conditions the same as (3.3), (3.4), and (3.5) by T_n^1 , T_n^2 , T_n^3 , respectively. If α_1 , α_2 , α_3 are distinct roots of the characteristic equation corresponding to (3.2), then

 $S_n = c_1 \alpha_1^n + c_2 \alpha_2^n + c_3 \alpha_3^n$

(3.6)
$$\alpha_1 + \alpha_2 + \alpha_3 = P_1; \quad \alpha_1\alpha_2 + \alpha_2\alpha_3 + \alpha_1\alpha_3 = -P_2; \quad \alpha_1\alpha_2\alpha_3 = P_3.$$

$$S_{n}^{1} = \frac{1}{\Delta} [\alpha_{1}^{n+1} (\alpha_{3} - \alpha_{2}) - \alpha_{2}^{n+1} (\alpha_{3} - \alpha_{1}) + \alpha_{3}^{n+1} (\alpha_{2} - \alpha_{1})],$$

$$S_{n}^{2} = \frac{1}{\Delta} [\alpha_{1}^{n+1} (\alpha_{3}^{2} - \alpha_{2}^{2}) - \alpha_{2}^{n+1} (\alpha_{3}^{2} - \alpha_{1}^{2}) + \alpha_{3}^{n+1} (\alpha_{2}^{2} - \alpha_{1}^{2})],$$

$$S_{n}^{3} = \frac{P_{3}}{\Delta} [\alpha_{1}^{n} (\alpha_{3} - \alpha_{2}) - \alpha_{2}^{n} (\alpha_{3} - \alpha_{1}) + \alpha_{3}^{n} (\alpha_{2} - \alpha_{1})],$$

$$e \qquad \Delta = \begin{vmatrix} 1 & 1 & 1 \\ \alpha_{1} & \alpha_{2} & \alpha_{3} \\ \alpha_{1}^{2} & \alpha_{2}^{2} & \alpha_{3}^{2} \end{vmatrix} = (\alpha_{3} - \alpha_{2}) (\alpha_{3} - \alpha_{1}) (\alpha_{2} - \alpha_{1}); \text{ see [4]}.$$

By making use of (3.6), we easily get

 $S_n^2 = -P_1 S_n^1 + S_{n+1}^1, \quad S_n^3 = P_3 S_{n-1}^1.$

For the sake of convenience, let T_n^1 be denoted by T_n in what follows. Theorem 3.1: T_n is given in terms of S_n^1 by

$$T_n = -P_3 T_0^{(p)} S_{n-2}^1 + (P_1 T_1^{(p)} - T_2^{(p)}) S_{n-1}^1 + (1 - T_1^{(p)}) S_n^1 + T_n^{(p)}.$$

Proof: Let $\mathcal{I}_n^{(h)}$ be the solution of (3.2) and $\mathcal{I}_n^{(p)}$ be a particular solution of (3.1). Then

$$(3.7) T_n = T_n^{(h)} + T_n^{(p)}$$

where

(3.8) $T_n^{(h)} = c_1 \alpha_1^n + c_2 \alpha_2^n + c_3 \alpha_3^n$

with initial conditions

$$T_0 = 0, T_1 = 1, T_2 = P_1.$$

1992]

Using these initial conditions, we have

$$\begin{array}{rcl} c_1 &+ & c_2 &+ & c_3 &= -T_0^{(p)},\\ c_1\alpha_1 &+ & c_2\alpha_2 &+ & c_3\alpha_3 &= 1 &- & T_1^{(p)},\\ c_1\alpha_1^2 &+ & c_2\alpha_2^2 &+ & c_3\alpha_3^2 &= & P_1 &- & T_2^{(p)}. \end{array}$$

Solving these equations simultaneously, we get

$$c_{1} = \frac{\alpha_{3} - \alpha_{2}}{\Delta} \left[-T_{0}^{(p)} \alpha_{2} \alpha_{3} - (1 - T_{1}^{(p)}) (\alpha_{2} + \alpha_{3}) + (P_{1} - T_{2}^{(p)}) \right]$$
$$= \frac{\alpha_{3} - \alpha_{2}}{\Delta} \left[-\frac{P_{3}}{\alpha_{1}} T_{0}^{(p)} - (1 - T_{1}^{(p)}) (P_{1} - \alpha_{1}) + P_{1} - T_{2}^{(p)} \right].$$

Similarly,

and

.

$$\begin{split} c_2 &= -\frac{\alpha_3 - \alpha_1}{\Delta} \bigg[-\frac{P_3}{\alpha_2} \, T_0^{(p)} - \, (1 - T_1^{(p)}) \, (P_1 - \alpha_2) \, + \, P_1 - \, T_2^{(p)} \bigg] \\ c_3 &= \frac{\alpha_2 - \alpha_1}{\Delta} \bigg[-\frac{P_3}{\alpha_3} \, T_0^{(p)} - \, (1 - \, T_1^{(p)}) \, (P_1 - \alpha_3) \, + \, P_1 - \, T_2^{(p)} \bigg]. \end{split}$$

Hence, substituting for c_1 , c_2 , c_3 in (3.8) and simplifying we get

$$\begin{split} T_n^{(h)} &= \{ -P_3 T_0^{(p)} [\alpha_1^{n-1} (\alpha_3 - \alpha_2) - \alpha_2^{n-1} (\alpha_3 - \alpha_1) + \alpha_3^{n-1} (\alpha_2 - \alpha_1)] \\ &- P_1 (1 - T_1^{(p)}) [\alpha_1^n (\alpha_3 - \alpha_2) - \alpha_2^n (\alpha_3 - \alpha_1) + \alpha_3^n (\alpha_2 - \alpha_1)] \\ &+ (1 - T_1^{(p)}) [\alpha_1^{n+1} (\alpha_3 - \alpha_2) - \alpha_2^{n+1} (\alpha_3 - \alpha_1) + \alpha_3^{n+1} (\alpha_2 - \alpha_1)] \\ &+ (P_1 - T_2^{(p)}) [\alpha_1^n (\alpha_3 - \alpha_2) - \alpha_2^n (\alpha_3 - \alpha_1) + \alpha_3^n (\alpha_2 - \alpha_1)] \} / \Delta \\ &= -P_3 T_0^{(p)} S_{n-2}^1 - P_1 (1 - T_1^{(p)}) S_{n-1}^1 + (2 - T_1^{(p)}) S_n^1 + (P_1 - T_2^{(p)}) S_{n-1}^1. \end{split}$$

On further simplification, (3.7) reduces to

$$(3.9) T_n = -P_3 T_0^{(p)} S_{n-2}^1 + (P_1 T_1^{(p)} - T_2^{(p)}) S_{n-1}^1 + (1 - T_1^{(p)}) S_n^1 + T_n^{(p)},$$

which is the required result.

Remarks:

(1) If $P_1 = 1$, $P_2 = 1$, $P_3 = 0$, and $T_0 = 0$, $T_1 = 1$, (3.1) and (3.2) reduce to the second-order relations (2.1) and (2.2) with P = Q = 1 and a = 0, b = 1. With the above values of P_1 , P_2 , and P_3 , T_n given by (3.9) reduces to

$$T_n = (T_1^{(p)} - T_2^{(p)})S_{n-1}^1 + (1 - T_1^{(p)})S_n^1 + T_n^{(p)}.$$

We verify whether this equation reduces to (2.13) with a = 0, b = 1. Now $T^{(p)}_{(p)} = T^{(p)}_{(p)} = T^{(p)}_{(p)} = T^{(p)}_{(p)}$

$$T_1^{(p)} - T_2^{(p)} = T_1 - T_1^{(n)} - T_2 + T_2^{(n)},$$

ince $T_n = T_n^{(h)} + T_n^{(p)}$. Also,

$$T_1 = T_2 = 1$$
 and $T_2^{(h)} = T_1^{(h)} + T_0^{(h)}$.

Therefore,

 \mathbf{s}

$$T_1^{(p)} - T_2^{(p)} = -T_1^{(h)} + T_2^{(h)} = T_0^{(h)} = T_0 - T_0^{(p)} = -T_0^{(p)},$$

since $T_0 = 0$. Thus,

$$(3.10) \quad T_n = -T_0^{(p)} S_{n-1}^1 + (1 - T_1^{(p)}) S_n^1 + T_n^{(p)}.$$

Note that here $S_n^1 = S_n(0, 1)$. Now

$$S_n(1, 0) = S_{n-1}(0, 1)$$

Hence, (3.10) reduces to

$$T_n = -S_n(1, 0)T_0^{(p)} + (1 - T_1^{(p)})S_n(0, 1) + T_n^{(p)},$$

which is identical with (2.12).

(2) On similar lines, we can prove the following:

$$\begin{split} T_n^2 &= P_3(1 - T_0^{(p)})S_{n-2}^1 + (P_1T_1^{(p)} + P_2 - T_2^{(p)})S_{n-1}^1 - T_1^{(p)}S_n^1 + T_n^{(p)};\\ T_n^3 &= -P_3T_0^{(p)}S_{n-2}^1 + (P_1T_1^{(p)} + P_3 - T_2^{(p)})S_{n-1}^1 - T_1^{(p)}S_n^1 + T_n^{(p)}. \end{split}$$

(3) As in Remark (2) of Section 2, taking

$$T_n^{(p)} = \sum_{i=0}^{k} A_i n^i$$
 and $A_i = -\sum_{j=i}^{k} a_{ij} \beta_j$,

 a_{ij} as defined below, the sequences \mathbb{T}_n^1 can be expressed as

$$T_n^1 = P_3 \lambda_k^0 S_{n-2}^1 + (-P_1 \lambda_k^1 + \lambda_k^2) S_{n-1}^1 + (1 + \lambda_k^1) S_n^1 - \sum_{j=0}^{\kappa} \beta_j r_j (n) + (1 + \lambda_k^1) S_n^1 - \sum_{j=0}^{\kappa} \beta_j (n) + (1 + \lambda_$$

where

$$\begin{split} \lambda_{k}^{0} &= \sum_{j=0}^{k} \beta_{j} \alpha_{0j}, \quad \lambda_{k}^{1} = \sum_{j=0}^{k} \beta_{j} \sum_{i=0}^{j} \alpha_{ij}, \quad \lambda_{k}^{2} = \sum_{j=0}^{k} \beta_{j} \sum_{i=0}^{j} 2^{i} \alpha_{ij}, \\ r_{j}(n) &= \sum_{i=0}^{j} \alpha_{ij} n^{i}, \quad \alpha_{ij} = -\sum_{m=i+1}^{j} \delta_{im} \alpha_{mj}, \quad j > i, \\ \delta_{im} &= \binom{m}{i} (-1)^{m-i} [P_{1} + P_{2} 2^{m-i} + P_{3} 3^{m-i}]. \end{split}$$

and

(4) Similar results as above can be obtained for T_n^2 and T_n^3 .

4. The r^{th} -Order Recurrence Relation

Let

(4.1)
$$T_n = P_1 T_{n-1} + P_2 T_{n-2} + \cdots + P_{r-1} T_{n-r+1} + P_r T_{n-r} + \sum_{j=0}^{k} \beta_j n^j, \ r \ge 3,$$

be the r^{th} -order recurrence relation with three sets of initial conditions as

- (4.2) $T_m = 0$, for $0 \le m \le r 3$, $T_{r-2} = 1$, $T_{r-1} = P_1$, (4.3) $T_m = 0$, for $0 \le m \le r - 1$, $T_0 = 1$, $T_{r-1} = P_2$,
- (4.4) $T_m = 0$, for $0 \le m \le r 2$, $T_{r-1} = P_3$.

The homogeneous part of (4.1) is the generalized r^{th} -order Fibonacci sequence. Let it be denoted by S_n so that

$$S_n = P_1 S_{n-1} + P_2 S_{n-2} + \cdots + P_n S_{n-n}$$

We take the same initial conditions as in (4.2)-(4.4). Following the same method as in Section 3, we can prove the following results:

$$\begin{split} T_n^1 &= -P_r T_0^{(p)} S_{n-2}^1 + (P_{r-2} T_1^{(p)} + \cdots + P_1 T_{r-2}^{(p)} - T_{r-1}^{(p)}) S_{n-1}^1 \\ &+ (1 + P_{r-3} T_1^{(p)} + \cdots + P_1 T_{r-3}^{(p)} - T_{r-2}^{(p)}) S_n^1 + \cdots \\ &+ (P_1 T_1^{(p)} - T_2^{(p)}) S_{n+r-4}^1 - T_1^{(p)} S_{n+r-3}^1 + T_n^{(p)}; \\ T_n^2 &= P_r (1 - T_0^{(p)}) S_{n-2}^1 + (P_{r-2} T_1^{(p)} + \cdots + P_1 T_{r-2}^{(p)} + P_2 - T_{r-1}^{(p)}) S_{n-1}^1 \\ &+ (P_{r-3} T_1^{(p)} + \cdots + P_1 T_{r-3}^{(p)} - T_{r-2}^{(p)}) S_n^1 + \cdots \\ &+ (P_1 T_1^{(p)} - T_2^{(p)}) S_{n+r-4}^1 - T_1^{(p)} S_{n+r-3}^1 + T_n^{(p)}; \end{split}$$

and

1992]

ON THE rth-ORDER NONHOMOGENEOUS RECURRENCE RELATION AND SOME GENERALIZED FIBONACCI SEQUENCES

$$\begin{split} T_n^3 &= -P_r \, T_0^{(p)} S_{n-2}^1 + (P_{r-2} T_1^{(p)} + \cdots + P_1 T_{r-2}^{(p)} + P_3 - T_{r-1}^{(p)}) S_{n-1}^1 \\ &+ (P_{r-3} T_1^{(p)} + \cdots + P_1 T_{r-3}^{(p)} - T_{r-2}^{(p)}) S_n^1 + \cdots \\ &+ (P_1 T_1^{(p)} - T_2^{(p)}) S_{n+r-4}^1 - T_1^{(p)} S_{n+r-3}^1 + T_n^{(p)}. \end{split}$$

Here we denote S_n with initial conditions (4.2) by S_n^1 and T_n with initial conditions (4.2), (4.3), (4.4) by T_n^1 , T_n^2 , T_n^3 , respectively. Remarks:

- (1) For r = 3, \mathbb{T}_n^1 reduces to the result of Theorem 3.1.
- (2) As in Remark (2) of Section 2, taking

$$T_n^{(p)} = \sum_{i=0}^k A_i n^i$$
 and $A_i = -\sum_{j=i}^k a_{ij} \beta_j$,

the sequence T_n^1 can be expressed as follows:

$$\begin{split} T_n^1 &= P_r \,\lambda_k^0 S_{n-2}^1 - (P_{r-2} \lambda_k^1 + \dots + P_1 \lambda_k^{r-2} - \left| \lambda_k^{r-1} \right| S_{n-1}^1 \\ &+ (1 - P_{r-3} \lambda_k^1 - \dots - P_1 \lambda_k^{r-3} + \lambda_k^{r-2}) S_n^1 + \dots \\ &+ (-P_1 \lambda_k^1 + \lambda_k^2) S_{n+r-4}^1 + \lambda^1 S_{n+r-3}^1 - \sum_{j=0}^k \beta_j r_j(n) \,, \end{split}$$

where

$$\begin{split} \lambda_{0}^{k} &= \sum_{j=0}^{k} \beta_{j} \alpha_{0j}, \qquad \lambda_{k}^{1} = \sum_{j=0}^{k} \beta_{j} \sum_{i=0}^{j} \alpha_{ij} \lambda^{i}, \quad k = 1, 2, \dots, r-1; \\ r_{j}(n) &= \sum_{i=0}^{j} \alpha_{ij} n^{i}, \quad \alpha_{ij} = -\sum_{m=i+1}^{j} \delta_{im} \alpha_{mj}, \quad j > i; \end{split}$$

and

$$S_{im} = \binom{m}{i} (-1)^{m-i} [P_1 + P_2 2^{m-i} + \dots + P_n r^{m-i}].$$

(3) Similarly, we can write the values of T_n^2 and T_n^3 .

(4) In [3], Asveld derived expressions for the family of differential equations corresponding to (1.1).

It is natural to ask whether such results can be proved for the r^{th} -order recurrence relation. This is the subject of our next paper.

References

- 1. P. R. J. Asveld. "A Family of Fibonacci-Like Sequences." Fibonacci Quarterly 25.1 (1987):81-83.
- 2. P. R. J. Asveld. "Another Family of Fibonacci-Like Sequences." Fibonacci Quarterly 25.4 (1987):361-64.
- 3. P. R. J. Asveld. "Fibonacci-Like Differential Equation with a Polynomial Nonhomogeneous Part." *Fibonacci Quarterly* 27.2 (1989):303-09.
- 4. W. L. Ferrar. Text Book of Determinants, Matrices and Algebraic Forms. Oxford: Oxford University Press, 1941.
- 5. A. F. Horadam. "Basic Properties of Certain Generalized Sequences of Numbers." *Fibonacci Quarterly* 3.3 (1965):161-76.
- 6. A. F. Horadam & A. G. Shannon. "Asveld's Polynomials p (n)." Proceedings of the Third International Conference on Fibonacci Numbers and Their Applications. Dordrecht: Kluwer, 1988.
- 7. A. F. Horadam. "Falling Factorial Polynomials of Generalized Fibonacci Type." Proceedings of the Fourth International Conference on Fibonacci Numbers and Their Applications. Dordrecht: Kluwer, 1990.
- 8. J. C. Turner. "Note on a Family of Fibonacci-Like Sequences." *Fibonacci Quarterly* 27.3 (1989):229-32.