
GENERATION OF GENOCCHI POLYNOMIALS OF FIRST ORDER 
BY RECURRENCE RELATIONS 

A. F . Horadam 
The University of New England, Armidale, N.S.W., Australia 

(Submitted October 1990) 

1. Motivation 

Genocchi 'polynomials of the first order, Gn(x), are defined [3] by 

(i.i) tanix)% --^et* 

as an extension of Genocchi numbers Gn defined in [1]. 
Following a suggestion by the referee of [3], I show briefly how G2n+i(%) 

(ft > 1) may be generated by x2- - x = x (x - 1). Such a possibility is to be 
expected since by (2.2) x = 0 and x = 1 are zeros of G2n+i(x). For example, 

(1.2) £13(x) = 13[^12 - 6x11 + 55#9 - 396x7 + 1683x5 - 3410x3 + 2073x] 
= 13[(x2 - X)s - 15(x2 - x ) 5 + 135(x2 - x ) 4 - 736(x2 - x) 3 

+ 2073(x2 - x ) 2 - 2073(x2 - x)]. 

It is the main purpose of this article to establish an algorithm for deriv-
ing a result like (1.2). Equations (3.6) and (3.7) are in fact the recurrence 
relations sought for G^n+i^)* the Genocchi polynomials of odd order. Simi-
larly, we obtain (3.11), a recurrence relation for G2n 0*0 of even order. Our 
treatment, which was excluded from [3] because of the already considerable 
length of that paper, follows that given in [8] for Euler polynomials En(x). 

The theory expounded here does not generalize to G„ (x), the Genocchi poly-
nomials of order k [3]. An examination of the G^\x) listed in [3] will readily 
reveal why this is so. 

Another purpose of this article is to answer a question raised at the 1990 
International Fibonacci Conference at Wake Forest University, U.S.A. 

2. Some Genocchi Formulas 

Properties of Gn(x) required to obtain the recurrence relations include [3] 

(2.1) ^£p- = nff„_!(*), n > 1, 
and 

(2.2) G2n(\) = G2n.+ l(0) = G2n+1(l) = 0 , n > 1. 

It is to be noted that 

(2.3) Gn(x) = nEn_l(x), 
from which we have Genocchirs theorem ([1], [3], [4]) 

(2.4) Gln = 2ft#2n_1(0) 

for Genocchi numbers Gn = Gn(0) given in [1], [3], and\ [4] (see [2] also). 
However, #2n-l(0) are not Euler numbers, but numbers related to Euler num-

bers ([3], [5]). Information on Euler polynomials and Bernoulli polynomials 
may be found, for example, in [5]. Other material of interest relating these 
polynomials to angular momentum traces occurs in [6], [7], and [8]. 
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3 . T h e G e n o c c h i G e n e r a t i o n 

Us ing i n d u c t i o n [8] a s employed i n [6] f o r B e r n o u l l i p o l y n o m i a l s , we can 
show t h a t 

( 3 . 1 ) G2n + l(x) = Yn(u), 

where 

(3.2) „ - * * - * ( § = 2x >)• 
With the help of (2.1), (2.2), (3.1), and (3.2), from which 

( i)2 - *» + >• 
we can derive, after a few steps, the differential equation 

(3.3) (4w + 1)——rr^- + 2 ^ = 2n(2n + l)Yn.l{u). du2- du 

Now let 

(3.4) G2n + 1(x) = Yn(u) = Y^A^1 = (2n + 1) £C-u* 

and 

(3.5) 

i= o i=o 

G2n.l(x) = yn-!(w) = S BiU
l = (2n - 1) E Z ^ 

i=0 i= 0 

so that, by (2.3), the C^ and D^ axe the same as for E2n(x) in [8]. 
Calculation in (3.3) - (3.5) yields (cf. [8]) 

(3.6) (2n - l)An = (2n + l)S„-i 
and 
(3.7) i(^ + l ) ^ + i + 2i(2i - 1 ) ^ = 2n(2n + l)Bi-l, 
for l < i < n - l , n>2. 

Solving (3.6) and (3.7) for n = 1, 2, 3, ... gives the constants Ai and 5^ 
in the expansions (3.4) and (3.5). Table 1 supplies an appreviated list of 
these. 

From (2.2) and (3.1), it follows that, for n > 1, 
I 

(3.8) Yn(u) = G2n + i(x) = 0 when x = 0, I, I.e., u = 0. 
Thus, Yn(u), n > 1, has no constant term, i.e., ^40 = 0. Likewise, BQ = 0. 

Consequently, the recurrence relations (3.6) and (3.7) generate G2n + i(x) = 
Yn(u)., where GY{x) = Y0(u) = 1 = u°. 

Table 1 
Coefficients A^ of G2n + i (̂ ) = Yn(u) 

1 
2 
3 
4 
5 

1 

3 
-5 
21 

-133 
1705 

2 

5 
-21 
133 

-1705 

3 

7 
-54 
605 

4 

9 
110 

5 

11 

Note that in (3.7) when i = 1, n > 2 (BQ = 0), we obtain 
(3.9) -4i. 
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In Table 2 of [8], we observe the apparently unnoticed fact that the ele-
ments in column 2 for the Euler polynomials E2n(x) are the Genocchi numbers GL+, 
G§, GQ, GIQ, . .., while those in column 1 are the negatives of these Genocchi 
numbers„ 

Why is this so? 
For each n > 2, 

(3.10) Gln = 2nE2n_l(0) from (2.4), 

d -E2n (x) 
dx ^ | x = 0 

d ( n 

(2x - l)—\ £ ^ W 
du i^o 

by (2.1), (2.3), 

^=0 from [8], equation (32) 
u= 0 

Because of (3.9) and (3.10), the elements in the first and second columns 
of our Table 1 will be appropriate multiples of Genocchi numbers, namely, 

(2n + l)G2n = -^i for each n > 2. 

Coming now to generators of G2n(x) we have, from (2.1), 

1 dG2n+\(x) 
(3.11) G2n(x) In + 1 dx 

_ 2x - 1 dln (u) 

In + 1 du 
= {2x - l)Zn_1(w): 

by (3.1), (3.2), 

dly, (U) 
(3.12) (2w + DZ^^u) = y 

du 
i.e., the Zn_i(u) can be derived from the known Yn(u). 

For example, 
Gs(x) = 3(2x - l)(u2 - 2u + 1) = (2x - l)Z2(u) 

with 
dl3}U) = l4~Ou - 3u2 + u 3 ) = 7[3(1 - 2u + u2)] = lZ2(u) 

du du 
on using our Table 1. From this table for Zn_]_(u), a corresponding table for 
An-i(u) could be constructed. 

4. A Question Answered 

Consider x2 - x - 1 = u - 1 by (3.2). This is the well-known algebraic 
expression for the Fibonacci recurrence, Fn + 2 - Fn+i - Fn = 0, whose zeros are 
(1 + v5)/2 and its negative reciprocal. 

Next, from [1] or (1.1), 

(G5(x) = 5u(u - 1) 
(4*1; \Gs(x) = 3(2x - l)(u - I)2 = 3(u - D 2 f^, 

i.e., the term u - 1 in G$(x) is squared in G§(x). 
At my address on Genocchi polynomials to the Fourth International Confer-

ence on Fibonacci Numbers and Their Applications held at Wake Forest University 
in Winston-Salem, North Carolina, U.S.A. (see [3]), I was asked: "Is there any 
pattern in the Gn(x) for other (positive) powers of u - 1?" 
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Assume that, for some N, the Genocchi polynomial GN(x) contains a factor 
(u - l)k. Then, by (2.1), GN-i(x) contains a factor (u - l)k~l. 

There are two cases to be investigated, namely, 

I. N = In and II. N = In + 1. 
Recall that, by virtue of (2.2), 

!

2x - 1 = -j- is always a factor of G2n (x) , 

x(x - 1) = u is always a factor of G2n+i{^). 

Case I. Suppose 

(a) G2n(x) = n|*(w - l)m 

(3) G2n-l(*) = (2w - l)u(u - l)*"1, 

the numbers n = 2n/2 and 2n - 1 being necessary coefficients (see [3]). Now 
dG2w(#) 

(Y) 

(6) 

tfe n{2(u - l)m + (4w + Drc(w - l)7""1} 
W(W - 1 ) 7 7 7 " 1 { ( 2 + 477?)u + 777 - 2 } 

2n£2„ -1 (x) 
2n(2n - l)w(w - I)777 '1 

For (a) and (3) to be valid, we must have (y) = (&) > 
(2 + 4T?7)̂  + 777 - 2 = (4n - 2)u, 

whence 

<*•» ft:'-
Case II. Secondly, suppose 

from (a) 

by (2.1) 

by (3). 

Equating these produces 

(a') 

(3') 

Then, 

(yf) 

(6') 

du , G2n (x) 

dG2n+l(x) 
dx 

dx (u - l)P~\ 

2n + l){%(u - 1)P + up(u - DP'1^} from (a') 

&r (2w + l)(w - I)?"1 |^{w - I + up] 

(2n + 1)£2*0*0 

= (2n 4 l)n ̂ (w - l)?"1 
by (2.1) 

by (3'). 

1, which must be discarded because Solving (y') and (6') leads to p = n 
p and n were assumed to be positive. 

Cases I and II demonstrate that, by (4.2), the only occurrence of powers of 
u - 1 is that in G5(x) and G$(x) given in (4.1). 

Our answer to the question is thus: No! 
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