GENERATION OF GENOCCHI POLYNOMIALS OF FIRST ORDER BY RECURRENCE RELATIONS

A. F. Horadam

The University of New England, Armidale, N.S.W., Australia (Submitted October 1990)

1. Motivation

Genocchi polynomials of the first order, $G_n(x)$, are defined [3] by

(1.1)
$$\sum_{n=0}^{\infty} G_n(x) \frac{t^n}{n!} = \frac{2t}{e^t + 1} e^{tx}$$

as an extension of Genocchi numbers G_n defined in [1].

Following a suggestion by the referee of [3], I show briefly how $G_{2n+1}(x)$ $(n \ge 1)$ may be generated by $x^2 - x = x(x - 1)$. Such a possibility is to be expected since by (2.2) x = 0 and x = 1 are zeros of $G_{2n+1}(x)$. For example,

 $\begin{aligned} G_{13}(x) &= 13[x^{12} - 6x^{11} + 55x^9 - 396x^7 + 1683x^5 - 3410x^3 + 2073x] \\ &= 13[(x^2 - x)^6 - 15(x^2 - x)^5 + 135(x^2 - x)^4 - 736(x^2 - x)^3 \\ &+ 2073(x^2 - x)^2 - 2073(x^2 - x)]. \end{aligned}$ (1.2)

It is the main purpose of this article to establish an algorithm for deriving a result like (1.2). Equations (3.6) and (3.7) are in fact the recurrence relations sought for $G_{2n+1}(x)$, the Genocchi polynomials of odd order. Similarly, we obtain (3.11), a recurrence relation for $G_{2n}(x)$ of even order. Our treatment, which was excluded from [3] because of the already considerable length of that paper, follows that given in [8] for Euler polynomials $E_n(x)$.

The theory expounded here does not generalize to $G_n^{(k)}(x)$, the Genocchi polynomials of order k [3]. An examination of the $G_n^{(k)}(x)$ listed in [3] will readily reveal why this is so reveal why this is so.

Another purpose of this article is to answer a question raised at the 1990 International Fibonacci Conference at Wake Forest University, U.S.A.

2. Some Genocchi Formulas

Properties of $G_n(x)$ required to obtain the recurrence relations include [3]

(2.1)
$$\frac{dG_n(x)}{dx} = nG_{n-1}(x), \quad n \ge 1,$$
and
(1)

$$(2.2) G_{2n}\left(\frac{1}{2}\right) = G_{2n+1}(0) = G_{2n+1}(1) = 0, \quad n \ge 1.$$

It is to be noted that

(2.3)
$$G_n(x) = nE_{n-1}(x)$$
,

from which we have Genocchi's theorem ([1], [3], [4])

$$(2.4) \quad G_{2n} = 2nE_{2n-1}(0)$$

for Genocchi numbers $G_n \equiv G_n(0)$ given in [1], [3], and [4] (see [2] also). However, $E_{2n-1}(0)$ are not Euler numbers, but numbers related to Euler numbers ([3], [5]). Information on Euler polynomials and Bernoulli polynomials may be found, for example, in [5]. Other material of interest relating these polynomials to angular momentum traces occurs in [6], [7], and [8].

1992]

3. The Genocchi Generation

Using induction [8] as employed in [6] for Bernoulli polynomials, we can show that

(3.1) $G_{2n+1}(x) = Y_n(u)$, where

(3.2)
$$u = x^2 - x \left(\frac{du}{dx} = 2x - 1\right).$$

With the help of (2.1), (2.2), (3.1), and (3.2), from which

$$\left(\frac{du}{dx}\right)^2 = 4u + 1,$$

we can derive, after a few steps, the differential equation

(3.3)
$$(4u + 1)\frac{d^2Y_n(u)}{du^2} + 2 \frac{dY_n(u)}{du} = 2n(2n + 1)Y_{n-1}(u).$$

Now let

and

(3.4)
$$G_{2n+1}(x) = Y_n(u) = \sum_{i=0}^n A_i u^i = (2n+1) \sum_{i=0}^n C_i u^i$$

and

(3.5)
$$G_{2n-1}(x) = Y_{n-1}(u) = \sum_{i=0}^{n-1} B_i u^i = (2n-1) \sum_{i=0}^{n-1} D_i u^i$$

so that, by (2.3), the C_i and D_i are the same as for $E_{2n}(x)$ in [8]. Calculation in (3.3) - (3.5) yields (cf. [8])

$$(3.6) \quad (2n-1)A_n = (2n+1)B_{n-1}$$

$$(3.7) \quad i(i+1)A_{i+1} + 2i(2i-1)A_i = 2n(2n+1)B_{i-1},$$

for $1 \leq i \leq n - 1$, $n \geq 2$.

Solving (3.6) and (3.7) for n = 1, 2, 3, ... gives the constants A_i and B_i in the expansions (3.4) and (3.5). Table 1 supplies an appreviated list of these.

From (2.2) and (3.1), it follows that, for $n \ge 1$,

(3.8) $Y_n(u) = G_{2n+1}(x) = 0$ when x = 0, 1, i.e., u = 0.

Thus, $Y_n(u)$, $n \ge 1$, has no constant term, i.e., $A_0 = 0$. Likewise, $B_0 = 0$. Consequently, the recurrence relations (3.6) and (3.7) generate $G_{2n+1}(x) = Y_n(u)$, where $G_1(x) = Y_0(u) = 1 = u^0$.

Table 1 Coefficients A_i of $G_{2n+1}(x) = Y_n(u)$

ni	1	2	3	4	5
1 2	3 -5	5		~	
3	21	-21	7		
4 5	-133 1705	133 -1705	-54 605	9 110	11

Note that in (3.7) when i = 1, $n \ge 2$ ($B_0 = 0$), we obtain (3.9) $A_2 = -A_1$.

240

In Table 2 of [8], we observe the apparently unnoticed fact that the elements in column 2 for the Euler polynomials $E_{2n}(x)$ are the Genocchi numbers G_4 , G_6 , G_8 , G_{10} , ..., while those in column 1 are the negatives of these Genocchi numbers.

Why is this so? For each $n \ge 2$,

$$(3.10) \quad G_{2n} = 2nE_{2n-1}(0) \qquad \text{from } (2.4),$$

$$= \frac{d}{dx}E_{2n}(x)\Big|_{x=0} \qquad \text{by } (2.1), (2.3),$$

$$= (2x - 1)\frac{d}{du}\left\{\sum_{i=0}^{n}C_{i}u^{i}\right\}\Big|_{u=0}^{x=0} \qquad \text{from } [8], \text{ equation } (32)$$

$$= -C_{1}.$$

Because of (3.9) and (3.10), the elements in the first and second columns of our Table 1 will be appropriate multiples of Genocchi numbers, namely,

$$(2n + 1)G_{2n} = -A_1$$
 for each $n \ge 2$.

Coming now to generators of
$$G_{2n}(x)$$
 we have, from (2.1),

$$(3.11) \quad G_{2n}(x) = \frac{1}{2n+1} \frac{dG_{2n+1}(x)}{dx}$$
$$= \frac{2x-1}{2n+1} \frac{dY_n(u)}{du} \quad \text{by (3.1), (3.2),}$$
$$= (2x-1)Z_{n-1}(u),$$

i.e.,

(3.12)
$$(2n + 1)Z_{n-1}(u) = \frac{dY_n(u)}{du}$$

i.e., the $Z_{n-1}(u)$ can be derived from the known $Y_n(u)$. For example,

i exampie,

$$G_{6}(x) = 3(2x - 1)(u^{2} - 2u + 1) = (2x - 1)Z_{2}(u)$$

$$\frac{dY_{3}(u)}{du} = 7\frac{d}{du}(3u - 3u^{2} + u^{3}) = 7[3(1 - 2u + u^{2})] = 7Z_{2}(u)$$

with

on using our Table 1. From this table for $Z_{n-1}(u)$, a corresponding table for $A_{n-1}(u)$ could be constructed.

4. A Question Answered

Consider $x^2 - x - 1 = u - 1$ by (3.2). This is the well-known algebraic expression for the Fibonacci recurrence, $F_{n+2} - F_{n+1} - F_n = 0$, whose zeros are $(1 + \sqrt{5})/2$ and its negative reciprocal.

Next, from [1] or (1.1),

(4.1)
$$\begin{cases} G_5(x) = 5u(u-1) \\ G_6(x) = 3(2x-1)(u-1)^2 = 3(u-1)^2 \frac{du}{dx}, \end{cases}$$

i.e., the term u - 1 in $G_5(x)$ is squared in $G_6(x)$.

At my address on Genocchi polynomials to the Fourth International Conference on Fibonacci Numbers and Their Applications held at Wake Forest University in Winston-Salem, North Carolina, U.S.A. (see [3]), I was asked: "Is there any pattern in the $G_n(x)$ for other (positive) powers of u - 1?"

1992]

Assume that, for some N, the Genocchi polynomial $G_N(x)$ contains a factor $(u - 1)^k$. Then, by (2.1), $G_{N-1}(x)$ contains a factor $(u - 1)^{k-1}$. There are two cases to be investigated, namely,

I. N = 2n and II. N = 2n + 1.

Recall that, by virtue of (2.2),

$$\begin{cases} 2x - 1 = \frac{du}{dx} \text{ is always a factor of } G_{2n}(x), \\ x(x - 1) = u \text{ is always a factor of } G_{2n+1}(x). \end{cases}$$

Case I. Suppose

(a)
$$G_{2n}(x) = n \frac{du}{dx} (u - 1)^m$$

(β)
$$G_{2n-1}(x) = (2n - 1)u(u - 1)^{m-1},$$

the numbers n = 2n/2 and 2n - 1 being necessary coefficients (see [3]). Now $dG_{2n}(x)$

(Y)
$$\frac{du (x)}{dx} = n\{2(u-1)^m + (4u+1)m(u-1)^{m-1}\} \quad \text{from } (\alpha)$$
$$= n(u-1)^{m-1}\{(2+4m)u+m-2\}$$
$$= 2nG_{2n-1}(x) \quad \text{by } (2.1)$$

(5)
$$= 2n(2n-1)u(u-1)^{m-1}$$
 by (β).

For (a) and (b) to be valid, we must have $(\gamma) = (\delta)$. Equating these produces (2 + 4m)u + m - 2 = (4n - 2)u,

whence (4.2) $\begin{cases} m = 2 \\ n = 3 \end{cases}$

Case II. Secondly, suppose

$$(\alpha') \qquad G_{2n+1}(x) = (2n+1)u(u-1)^p$$

(\beta')
$$G_{2n}(x) = \frac{du}{dx}(u-1)^{p-1}.$$

Then,

$$\begin{aligned} \frac{dG_{2n+1}(x)}{dx} &= (2n+1) \left\{ \frac{du}{dx} (u-1)^p + up(u-1)^{p-1} \frac{du}{dx} \right\} & \text{from } (\alpha') \\ (\gamma') &= (2n+1)(u-1)^{p-1} \frac{du}{dx} \{u-1+up\} \\ &= (2n+1)G_{2n}(x) & \text{by } (2.1) \\ (\delta') &= (2n+1)n \frac{du}{dx} (u-1)^{p-1} & \text{by } (\beta'). \end{aligned}$$

Solving (γ') and (δ') leads to p = n = -1, which must be discarded because p and n were assumed to be positive.

Cases I and II demonstrate that, by (4.2), the only occurrence of powers of u - 1 is that in $G_5(x)$ and $G_6(x)$ given in (4.1). Our answer to the question is thus: No!

242

References

- 1. L. Comtet. Advanced Combinatorics. Reidel, 1974.
- 2. A. Genocchi. "Intorno all'espressione generale de'Numeri Bernulliani. Nota." Annali di Scienze Matematiche e Fisiche 3 (1852):395-405.
- 3. A. F. Horadam. "Genocchi Polynomials." Proceedings of the Fourth International Conference on Fibonacci Numbers and Their Applications. Kluwer, 1991, pp. 145-66.
- 4. E. Lucas. Théorie des Nombres. Blanchard, 1961.
- 5. N. E. Nörlund. Vorlesungen über Differenzenrechnung. Chelsea, 1954.
- P. R. Subramanian. "A Short Note on the Bernoulli Polynomial of the First Kind." Math. Student 42 (1974):47-59.
- P. R. Subramanian & V. Devanathan. "Recurrence Relations for Angular Momentum Traces." J. Phys. A.: Math. Gen. 13 (1980):2689-93.
 P. R. Subramanian & V. Devanathan. "Generation of Angular Momentum Traces" of Angular Momentum Traces
- P. R. Subramanian & V. Devanathan. "Generation of Angular Momentum Traces and Euler Polynomials by Recurrence Relations." J. Phys. A.: Math. Gen. 18 (1985):2909-15.

AMS Classification numbers: 11B83, 11B37.
