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In this paper we show that, when a binary tree is in a certain critical 
balance, there emerge the Golden Ratio and the Fibonacci numbers. 

The paper consists of two sections. In the first section we find some ele-
mentary balance properties of optimal binary trees with variously weighted 
leaves. In the second section, a basic inequality implied by the optimality of 
trees is in turn used to define what we mean by "balanced" for a binary tree 
with leaves all weighted 1. The Fibonacci tree is then shown to be a highest 
balanced tree. 

1. Balance Properties of Optimal Binary Trees 

Consider a binary tree that has n leaves (terminal nodes) with weights or 
probabilities p. > 0, p-, + • • • + pn = 1, assigned to leaves. It has, then, 
n - 1 internal nodes, where an internal node is a node that has two children. 
We define the weight of an internal node as the sum of all leaf weights of the 
subtree rooted at this node. Therefore, recursively, the weight of an internal 
node is the sum of the weights of its children. Clearly the root has weight 1. 

A node is said to be at level k if the length of the path from the root to 
this node is k. The root is, hence, at level 0. Let %i be the level of the 
leaf weighted p.. Then the average path length is defined by 

L = 2>;V 
In this section we shall be concerned with a binary tree that is optimal in the 
sense that it has the minimum average path length for the given leaf weights. 

The well-known Huffman algorithm [3] finds an optimal tree called the 
Huffman tree. The algorithm can be stated in the following recursion form: 
First, find the two least weights, say x and y, in the list p., p2, ..., p , and 
replace these two by 2 (= x + y) . Then construct a Huffman tree for the new 
list of n - 1 weights, and then split, in this tree, a leaf of weight z into 
its children of weights x and y. Note, however, that not every optimal tree is 
a Huffman tree. 

The original motivation for minimizing average path length was to minimize 
expected search time to leaves. Suppose that one person thinks of z E {1, ..., 
n} and you attempt, knowing Prob{-s = £} = p^ , to determine what it is by asking 
questions that can be answered "yes" or "no." Then you may use a binary tree 
with leaves 1, ..., n of weights p^ , ..., pn as follows. You ask the first 
question at the root: "Does z belong to the left subtree of the root?" If the 
answer to this question is yes [no], then you go to the left [right] child of 
the root, say a, where you ask the second question: "Does z belong to the left 
subtree of a?" If the answer to this question is yes [no], then you go to the 
left [right] child of a , ... . The average number of questions required to 
find z is given by the average path length of the tree. 

Lemma 1: If z^-i and wk are weights of nodes at levels k - 1, A: in an optimal 
tree, then z^-1 - wk* 

Proof: If the node of weight Wk exists in the subtree rooted at the node of 
weight k^-1' then the assertion is obviously true. If not, consider exchanging 
the subtrees rooted at these nodes. Denote by L and Lr the average path 
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lengths of the trees before and after the exchange, respectively. Then we have 
Lf - L = wk_i - wk , because leaves with total weight Wk_i have path length one 
longer under Lf, and leaves with total weight Wk have path length one longer 
under L. Since the tree before the exchange is optimal, we have L < L', hence 
wk.l > wk. • 

We say that wk_i, wki wk + i is a weight sequence in a binary tree if Wk is 
the weight of an internal node at level k, ^k-l i-s t n e weight of its parent, 
and Wk+i is the weight of one of its children. Also, let wk and Wk+\ be the 
weights of the "brothers" of those nodes-with weights Wk, Wk + i> respectively. 

Theorem 1: If i^-l* wk, Wk+i is a weight sequence in an optimal tree, then 

wk-l * wk + wk + l° 
Proof: By Lemma 1, we have Wk > Wk + i. Hence, 

^k-i = uk + wk > wk + wk+l. D 

This inequality was implicit in [4] for Huffman trees and was explicitly 
stated in [1]. It was shown in [1] that it also holds in a weight-balanced 
tree if the node with weight Wk + i is internal or if the sequence of leaf 
weights forms a valley, i.e., 

p1 > • - - > p.. < . • . < pn for some j, 1 < j < n. 

Theorem 2: If z^-1' wk» wk+l is a weight sequence in an optimal tree, then 

wk/wk-i < 2/3. 

Proof: From Theorem 1, we have 

wk_l > wk + wk+l 

wk-l - wk + wk+l. 

Putting p = Wk/wk-i and q = wk+i/wk , these inequalities, divided by W^-i, can 
be written as 

1 > v + pq 
(2) 

1 > p + p(l - q)9 

which, added together, gives p < 2/3. • 

From this theorem, if the node with weight Wk is also internal, we have 

1/3 < wk/wk-l < 2/3. 

Otherwise, wk/wk-i can be arbitrarily small. These bounds 1/3 and 2/3 can be 
attained as seen from the Huffman tree for the leaf weights: 

3-m-l9 3-m-l9 3-m-lf 3-m^ 3-m? _ ^ 3 - 2 5 3 ~ 2 s 3-^ 3-1^ 

The set of points (p, q) , 0 < p < 1, 0 < q < 1, satisfying (2) above forms 
the region ABCDO in Figure 1. The figure may aid one to graphically understand 
the balance properties stated in the following. Here \p is the Golden Section 
point of the unit interval: 

* = (1/5 - D/2, 1 - * = *2. 

Now let us say that a is ^-balanced for 1/2 < a < 1 if a e [1 - a, a]. The 
next theorem states that a lack of ^-balance involving siblings at one level is 
immediately restored at the next lower level. 

Theorem 3: If Wk-i, Wk, Wk + i is a weight sequence in an optimal tree and if 
Wk/wk.-i > I)J, then 
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( a ) M]t+i/Wit i s ^ - b a l a n c e d , 

(b) (wk/wk-i) + (wk+l/wk) < 2ip. 

Proof: From t h e f i r s t i n e q u a l i t y of ( 2 ) , we have 

q < l/p - 1 < 1 / * - 1 = i|/, 

and from t h e s e c o n d , 

q > 2 - l/p > 2 - 1/jf) = 1 - j\>. 

Therefore, q is ip-balanced. For (b) use p + q = p + l/p - 1 obtained from (2). 
The function p + l/p - 1 is monotonically decreasing for p < 1; hence, p + q is 
less than xp + 1 /xp - 1 = 2$ by the assumption p > i|>. Q 

(3) 

Notice that (1) is equivalent to the following "uncle > nephew" condition: 

^k ~ wk+l> 

wk > wk+l. 
Hence, the worse the balance of p (approaching 2/3), the better the balance of 
q (approaching 1/2). And the critical point for turning back to a better 
balance may be defined by the number 

a* = inf { a : p > a = > l - a < ^ < a } . 

Theorem 4: a* = ty. 

Proof: To determine the critical point, we set q = p - a* and assume the equal-
ity q = l/p - 1, i.e., a* = 1/a* - 1. • 

What about the upper bound on wk? Is there a bound in terms of kl Letting 
Fn+l = Fn

 + Fn-l (n - 1)» ^o = 0> ^1 = 1J be the Fibonacci numbers, we have 

Theorem 5: If wQ, ..., wk> wk + l are the weights on a path from the root in an 
optimal tree, then wk < 2/Fk+3. 
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Proof: By Theorem 2 , we have 

wk-l > (3/2)wk = {Fh/F3)wk. 

Using the bas ic s u b a d d i t i v i t y r e l a t i o n of Theorem 1, we have, r e c u r s i v e l y , 
wk.2 > wk.l + wk > {Fh/F3)wk + wk = (F5/F3)wk, 

^k-3 * wk-2 + ^k-1 * ^blF^wk + (Fk/F3)wk = (F6/F3)wk, 

1 = w0 > wx + w2 > (Fk + 2/F3)wk +• (Fk+1/F3)wk = (Fk+3/F3)wk9 

completing the proof. Q 

The bound 2/Fk+3 can also be attained. This is seen from one Huffman tree 
(there may be many) for the leaf weights that are the following divided by Fk+3 
(see Figure 2): 

Fl9 F2, F29 F3, Fh, . .., Fk, Fk+i. 

The internal node at level i has weight 

wi = Fk+3_i/Fk+3, 0 < i < k. 

We have Wk/wk„i = F3/F^ = 2/3, and all the inequalities in the proof of Theorem 
5 become equalities, and wk = 2/Fk+3, Furthermore, we see that 

wilwi-l = Fk+3- JFk + h-i 
approaches ip for each i when k becomes large. This Huffman tree is a tree 
where the restoration of the ijj-balance is occurring "most" frequently, because, 
from the well-known identity Fn_i - i\>Fn = (-^)n , the ratio Fn-i/Fn becomes lar-
ger or smaller than ip, alternately. 

Figure 2 

2. Fibonacci Tree as a Highest Balanced Tree 

In the binary tree we consider here in this section, the weight of a node 
is defined as the number of leaves of the subtree rooted at the node. Hence, 
the leaf weights are all one, the weight of the root is just the total number 
of leaves. 

When can we say that a binary tree is generally "balanced"? One natural 
definition may come from the inequality of Theorem 1. Since this relation is 
equivalent to (3) given in the previous section, let us say that a binary tree 
is balanced if it satisfies the following condition. 
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Balance Condition: The weight of every node is greater than or equal to the 
weight of each of its two "nephews" (if they exist). 

A binary tree in this weight model is thus balanced if and only if the two 
subtrees at the children of the root are balanced and the weights of the chil-
dren of the root are larger than or equal to the weights of their nephews. 
Also, this condition need only be checked for the child of the root with 
smaller weight. 

There are other balance conditions that can be enforced in constructing 
trees, some applicable from the top down. The \-weight-balancing described in 
[2] is such a method. Given 1/2 < A < 1, to construct a binary tree with n 
leaves by A-weight-balancing, we find the integer m such that 

m - (1 - A) < Xn < m + A, 

let m and n - m be the weights of the children of the root (i.e., the number of 
leaves assigned to each subtree), and proceed similarly to construct the two 
subtrees. The partition mi (n - m) of n is a discrete version of the cut 
A : (1 - A) of the unit interval. Notice that the A-weight-balancing can be 
considered as a method to build a binary tree having a self-similar structure. 
We will show that the tree with n leaves built by this method is a balanced 
tree for every n if and only if 1/2 < \ < ty. First, we review a few things 
about the Fibonacci trees (see [2]). 

The Fibonacci tree of order k, denoted by Tk, is a binary tree that has Fk 

leaves, and is constructed as follows: Ti and T2 are simply the roots only, and 
for k > 3 the left subtree of T^ is ̂ - 1 and the right subtree is Tk_2. Let u s 

denote by T(n) the tree with n leaves constructed by ^-weight-balancing. We 
may call T(n) "the extended Fibonacci tree," for it has been shown in Theorem 5 
of [2] that 

T{Fk) = Tk. 

We also have 

Theorem 5 [2] : If n = Fk + r, where 0 < r < Fk.i9 then the height of T(n) is 
k - 2. [From Fk ~ (l//5)*"fc, we have k - 2 ~ (log n)/(-log \j>) . ] 

Theorem 6: If the tree with n leaves constructed by A-weight-balancing is a 
balanced tree for every n, then we have A < ij;. 

Proof: Suppose A = i(i + e, e > 0 . Let /??]_ and n - mi be the weights of the chil-
dren of the root, and let m2 and mi - m2 be the weights of the children of the 
node with weight mi. The balancing rule implies Xn < mi + X and Xmi < m2 + X. 
Although the node with weight m2 is a nephew of the node with weight n - /??]_, we 
have m2 greater than n - mi, if n is taken large, as shown below: 

m2 ~ in - mi) > Xmi - A - n + mi 
> X(Xn - A) - A - n + (An - A) 
= e(/5 + e)n - (A2 + 2A), 

where we used A = i> + e and \p = (/5 - l)/2. • 

Approximately speaking, the above proof is like this: The bipartition of n 
by the ratio A : (1 - A) makes children with weights Xn and (1 - \)n. And the 
partition of Xn by the same ratio produces the node with weight A(An), which is 
a nephew of the node of weight (1 - \) n. The balance condition requires 
A(An) < (1 - A)n; hence, A2 < 1 - A, and we have A < ̂ . 

Next, we show 

Theorem 7: The tree with n leaves constructed by IJJ-weight-balancing is a bal-
anced tree. 
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Proof: We prove by induct ion on n t ha t T{n) i s balanced. T r i v i a l l y , T(2) i s a 
balanced t r e e . Let us r ep resen t n (> 3) in the following form: 

n = Fk 4- p , 0 < v < Fk_1. 

Then k > 4. Let /??]_ and n - mi be the weights of the children of the root, so 
that mi - (1 - ijj) < tyn < mi + I(J. AS noted in [2], 

/?7l = Fk_i + s, where s = [ipr - ip - (-^)k] and 0 < s < Fk-2. 
(Txl = the least integer > x) 

Furthermore, let m2 and m\ - 77?2 be the weights of the children of the node with 
weight mi, then, similarly, we have 

m2 = Fk_z + \tys - * - (-^)k~l]> 

The left and right subtrees of T(n) are T(mi) and T(n - mi) 9 which are balanced 
by the induction hypothesis. Since, clearly, 777̂  > n - mi and ̂  - ml " m 2 ' w e 

only need to show n - mi > m2 or n > mi + m2» 

mi + m2 = (Ffc.i + s) + {Fk_2 + F*s - * - (-ifi)̂ "1!) 
= Ffe + \s + *s - IJJ - H|O k _ 1 l 
< i ^ + [(1 + lfi)(l(jP - i(; - (-!(;)fe + 1) - * - (-*)/c_1l 
= Fk + [P + (if;2 + I(J - l)(p - 1 + (-*)k-1)l 
= Fk + p 
= n, 

completing the proof. Q 

Remark: If we use the rule 

"m - 1/2 < ipn < m + 1/2" 

instead of the rule 

"m - (1 - IJJ) < ipn < m + *,l! 

it will construct an unbalanced tree, when n = 95 for example. If we use the 
rule 

"m < ^n < m + 1," 

the tree built will not become T8 when n = FQ, for example. 

Now what can we say about the height of a balanced tree? 

Lemma 2: Denote by nh the minimum number of leaves that a balanced tree of 
height h can have. Then we have nh = Fh + 2. 

Proof: Induction on h. It is immediate that TLQ = 1 = F2 and n^ = 2 = F3. Con-
sider a balanced tree of height In > 2 with nh leaves. Let a, a1 be the weights 
of the children of the root. We may assume that the subtree rooted at the node 
with weight a has height h - 1. We may further assume that, letting b be the 
weight of a child of the node with weight a, the subtree rooted at the node 
with weight b has height In - 2. Since any subtree of a balanced tree is itself 
a balanced tree, we have 

a > nh_i, b > nh.2. 

By the induction hypothesis, we have 

nh-l = Fh + l> nh-2 = Fh-
Hence, 

a > Fh+l, b > Fh. 
The balance condition implies 

a' > b. 
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C o n s e q u e n t l y , we have 

nh = a + ar > Fh + l + Fh = Fh + 2. 

On the other hand, consider the Fibonacci tree T^ + 2' This is a balanced tree 
by Theorem 7, and has height h by Theorem 5, and has Fh + 2 leaves. Hence, from 
the minimality of nh9 we have 

nh < Fh + 1 . 

In conclusion, we have n-^ = Fh + 2* This completes the proof. • 

Theorem 8: In the class of all the balanced trees with n leaves, the extended 
Fibonacci tree T(n) is a highest one. 

Proof: Let n = Fk + r, 0 < v < ̂ -l» and let ^ De t n e height of an arbitrary 
balanced tree with n leaves. From Lemma 2, we have n > Fh+2l hence, 

Fh+2 < Fk + v < Fk + Fk.Y = Fk+l. 

This implies h + 2<korh<k-2. However, k - 2 is the height of T(n) by 
Theorem 5. D 
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