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1. Introduction 

Let a\, a2, #3, CLi+9 a5? and a6 denote the hexagon of elements immediately 
surrounding any given element a0 in Pascal's triangle. 

Since the first paper by Hoggatt & Hansell [8] showing that a\a^a^ = a2a^a^ 
and hence that H^=1a^ = k2- for some integer k, a number of papers examining the 
properties of these arrays and their generalizations have appeared. Among the 
more surprising of these is the GCD Star of David theorem that 

(al5 a3, a5) = (a2, ah, a6) 

conjectured by Gould [4] and proved and/or generalized by Hillman & Hoggatt [5] 
and [6], Strauss [11], Singmaster [10], Hitotumatu & Sato [7], Ando & Sato [1], 
[2], and [3], and Long & Ando [9]. In the last listed paper, it was shown that 

(a]_, ££35 ..., &17) = (#2> ^45 =«., #18) 

where the a , 1 < i, < 18, are the eighteen adjacent binomial coefficients in 
the regular hexagon of coefficients centered on any particular coefficient \^j 
and that 

(bl9 b3, ..., bxl) = £°  (b2, bh, ..., bl2) 
where the b , 1 < i < 12, are the twelve adjacent binomial coefficients in the 
regular hexagon of coefficients centered at (") with £ = l i f r o r n - r = s i s 
even, £ = 2 if r and s are odd and r E 3 (mod 4) or s = 3 (mod 4), and £ = 4 if 
v = s = 1 (mod 4). Moreover, it was conjectured that 

{a 1, a 3, ..., a2m- 1 ) = (a2, ai+, . . . , a2m) 

if the a^, 1 < i < 2m , are the coefficients in a regular hexagon of binomial 
coefficients with edges along the rows and main diagonals of Pascal's triangle 
and with an even number of coefficients per edge. For such regular hexagons 
but with an odd number of coefficients per edge it was conjectured that 

(aj_, #3, ..., #2m-l) = ^ * (a29 ^-4' •••» a2.m) 

where £ is a "simple" rational number depending on m, n, and P. In the present 
paper, we show that the regularity condition on the hexagons with an even num-
ber of coefficients per side is not necessary. In fact, we now conjecture that 
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the equal gcd property holds for convex hexagons of adjacent entries along the 
rows and main diagonals of Pascal's triangle provided there are 2u, 2v, 2w, 2u, 
2v, and 2w coefficients on the consecutive sides. Being unable to prove the 
conjecture in general, we here prove it for the case u = 3, V = 2, and W = 1. 

2. Some Preliminaries 

Throughout the paper small Latin letters will always denote integers. Let 
v + s = n as above, set A = (p) and, for simplicity, set 

n + In + k\ 
n 7. in + n + K\ 

Let p be a prime. For any rational number a, there exists a unique integer 
v = v(a) such that a = pva/b where (a, p) = (b, p) = 1. If v{n) = e, then 
pe\\n; i.e., pe\n and pe + lj(n. Moreover, it is clear that 

(1) v(l) = 0, 
(2) y(a3) = v(a) + y(3), 
(3) y(a/3) = y(a) - y(B), 
(4) t;(a ± 3) > min(y(a), u(3)) Va, 3, 
(5) y(a ± 3) = min(z;(a), y(3)) if y(a) * tf(3). 

F i n a l l y , If m = /771/??2. . .w^, t h e n 
( 6 ) (/??!, /?z2, . . . , m k ) = f l p m i n C v C ^ ! ) , . . . , y("zk)) -

3. The Main Result 

Now consider the eighteen binomial coefficients forming a hexagon centered 
at A as indicated in Figure 1. Let 

Si = {&]_, ££3, . . . , CL17S, S2 = \Q>2> a^9 . . . , Q>\QS i 

gcd 5X = ( a 2 , a 3 , . . . , a 1 7 ) , gcd Sz = ( a 2 , a 4 , . . . , a 1 8 ) . 

Then, u s i n g t h e n o t a t i o n (h, k) a b o v e , 

ax a2 a3 ah a 5 a 6 
® © ® ® ® @ 

fli 0 dn 
i t i « « © @ @ • ® 7 

a 1 6 a 9 

a 1 5 . • • • • # a 1 0 
a l i + a 1 3 a 1 2 a n 

F i g u r e 1 

we can list the elements of Si and S2 as in Table 1. 
It is clear from the table that the product of the elements in 5]_ is equal 

to the product of those in Sz and it is not difficult to show by counter exam-
ple that 1cm Si = 1cm S2 is not always true. In particular, if A = (̂ M* 

lcm Si = 23 • 32 • 5 • 7 • 11 • 13 and lcm S2 = 2 2 • 32 • 5 • 7 • 11 • 13, 

so lcm Si * lcm 52. However, the result shown in the Theorem below does hold. 
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T a b l e 1 

Sl = Sl(n, P ) S2 = S2(n, r) 
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(p + \){r + 2 ) ( p + 3) 

s{s - D C s - 2 ) ( n + 1) 
(p + l ) ( r + 2 ) ( p + 3 ) ( P + 4 ) ' 

s ( s - D C s - 2) 
w(r + l ) ( r + 2) 

^Cs - 1 ) , 
n ( n - D 

r ( r - D 
ft(7-Z - D 

and Si and S2 as above, Theorem: For any n > 7, r > 4, s > 4, with p + s 
gcd 5X = gcd 52-

Proof: Let p be any prime and, for convenience, set v((a, b)) = v(a, b) . 
set 

vi = yi^P) = m i n iv(a, b)}, i = 1, 2. 
(a, b)e Si 

Also, 

Clearly, we must show that V>i = V2 for all p. In fact, we show that both assump-
tions V>i < V>2 and V2 < V i lead to contradictions, so the desired equality must 
hold. Actually, the proof is not elegant. Since we can use neither symmetry 
nor rotation arguments, it is necessary to consider individually the nine cases 
where we successively let Vi = V (a^) , a^ £ 5 ]_, and show each time that the 
assumption V>i < V2 leads to a contradiction. It is also necessary to consider 
individually the nine cases where V2 = v{a^), ai £ S2, and show each time that 
the assumption V2 < Vi leads to a contradiction. In fact, since all these argu-
ments are very similar, we only prove case 1, where we take Vi = i?(-4, 3) < V2. 

For (a, b) e Si9 let u((a, b)) = u(a, b) = v(a, b) - v(A) and let u^ = v± -
v(A) for each i. With this notation, it is clear that the assumption Vi < v2 
is equivalent to U]_ < u2. First, assume that p is odd. The assumption Ui < u2 
implies that U]_ < u(a^) for all ai e S2» Therefore, in particular, 

Ui < u(-4, 2) and Ui < u(-3, 3); 

that is, 

(7) 

and 

(8) 

V{T 
JI(S 

r(r 

-
+ 

-

D(r 
D(s 

D(r 

-
+ 

-

2 ) ( r 
2) (8 

2 ) ( r 

-
+ 

-

3) 
3) 

3) 
n(s + l)(s + 2)(s + 3) 

< v 

< V 

r(r - l)(r - 2)Q - 3) 
n(n - l)(s + l)(s + 2) 

p(p - 1)(P - 2) 
(s + l)(s + 2)(s + 3) 

But, using (5), (7), and (8) clearly implies that 

(9) v(s + 3) > v(n - 1) = v(v - 4) > 0 
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and 

(10) v(n) > v(r - 3) = v(s + 3) > 0, 

whence it follows that p\n, p\(s + 3), and p\(r - 3) since r + s = n. But now, 
since p is odd, 

(11) p\(n - l)(r - 1)(P - 2)(s + l)(s + 2) 

and it follows that 

U Z j ^l Z' U ; %*(« - 1)/ \n(s + l)(s + 2)(s + 3) 

contrary to the assumption that u^ < u^* since (-2, 0) 6 S^• 
Now assume that p = 2. Then all of the above up to, but not including 

(11), still holds and we may conclude that n is even and r and s axe odd. Thus, 
2\r{r - 2)(r + 2)s(s + 2) (n + 1). Also, y(s + 3) > 0 in (10); hence v(n) > 2. 
But this implies that V{n + 2) = 1 since every second even integer is divisible 
by only 21 and no higher power. If v(n) < V(r - 1), then v(r - 1) > 2 and 

i „f_i ^ = ? 7 y(^ + D(rc + 2) \ /2»(r - l)(r - 2)(y - 3) 
UK l ' J ; \(s + l)(s + 2)(s + 3)/ " \n(s + l)(s + 2) (s + 3) 

contrary to the assumption that U\ < u^ since u{-l, 3) G 52. Therefore, again 
using (5), z;(n) > y(r - 1) = y(s + 1). If v(n) < v(r + 1), then 

7vM n - ;;^W + 1 ) ( n + 2)^i < AV^V ~ 1 ) ( P " 2 ) ( P " 3 )^ - 7v 
w ( 1 ' 1} " V\(r + l)(s + 1)J - H^(s + DCs + 2)(s + 3) J " U l 

since y(n + 2) = 1 < v(s + 1) from above. Since this is again a contradiction, 
it follows that v(n) > v(r -F 1) = v(s - 1) by (5). But then 

u(? -^ = rP{s " 1 ) ( S " 2)^ = ;;^(P - D O " - 2)(r - 3)\ = U U ' J ; *V(r + l)(r + 2)) V\n(s + 1) (s + 2) (s + 3)/ x 

by (10), and this again contradicts the assumption U\ < u^ since u(2> -3) £ 5£• 
Since similar arguments lead to contradictions in all the remaining seven-

teen cases, we conclude that v^ - V>2 for all p and hence that gcd S\ = gcd S2 
as claimed. 

We note that this argument, as in the preceding paper [9], depends on the 
fact that we have only a very finite number of cases to consider. The general 
argument for hexagons of arbitrary size will have to be much different and much 
more sophisticated. 
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