ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by

Stanley Rabinowitz
Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence may also be sent to the problem editor by electronic mail to 72717.3515@compuserve.com on Internet. All correspondence will be acknowledged.

Each solution should be on a separate sheet (or sheets) and must be received within six months of publication of the problem. Solutions typed in the format used below will be given preference. Proposers of problems should normally include solutions.
Dedication. This year's column is dedicated to Dr. A. P. Hillman in recognition of his 27 years of devoted service as editor of the Elementary Problems Section.

BASIC FORMULAS

The Fibonacci numbers F_{n} and the Lucas numbers L_{n} satisfy

$$
\begin{aligned}
& F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1 ; \\
& L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1 \\
& \text { Also, } \alpha=(1+\sqrt{5}) / 2, \beta=(1-\sqrt{5}) / 2, F_{n}=\left(\alpha^{n}-\beta^{n}\right) / \sqrt{5}, \text { and } L_{n}=\alpha^{n}+\beta^{n} .
\end{aligned}
$$

PROBLEMS PROPOSED IN THIS ISSUE

B-724 Proposed by Larry Taylor, Rego Park, NY
Dedicated to Dr. A. P. Hillman
Let n be a positive integer. Prove that the numbers $L_{n-1} L_{n+1}, 5 F_{n}^{2}, L_{3 n} / L_{n}$, $L_{2 n}, F_{3 n} / F_{n}, L_{n}^{2}, 5 F_{n-1} F_{n+1}$ are in arithmetic progression and find the common difference.

B-725 Proposed by Russell Jay Hendel, Patchogue, NY and Herta T. Freitag, Roanoke, VA

Dedicated to Dr. A. P. Hillman
(a) Find an infinite set of right triangles each of which has a hypotenuse whose length is a Fibonacci number and an area that is the product of four Fibonacci numbers.
(b) Find an infinite set of right triangles each of which has a hypotenuse whose length is the product of two Fibonacci numbers and an area that is the product of four Lucas numbers.

B-726 Proposed by Florentin Smarandache, Phoenix, AZ
Dedicated to Dr. A. P. Hillman

Let $d_{n}=P_{n+1}-P_{n}, n=1,2,3, \ldots$, where P_{n} is the nth prime. Does the series

$$
\sum_{n=1}^{\infty} \frac{1}{d_{n}}
$$

converge?
B-727 Proposed by Ioan Sadoveanu, Ellensburg, WA
Dedicated to Dr. A. P. Hillman
Find the general term of the sequence $\left(a_{n}\right)$ defined by the recurrence

$$
a_{n+2}=\frac{a_{n+1}+a_{n}}{1+a_{n+1} a_{n}}
$$

with initial values $\alpha_{0}=0$ and $\alpha_{1}=\left(e^{2}-1\right) /\left(e^{2}+1\right)$, where e is the base of natural logarithms.

B-728 Proposed by Leonard A. G. Dresel, Reading, England
Dedicated to Dr. A. P. Hillman
If $p>5$ is a prime and n is an even integer, prove that
(a) if $L_{n} \equiv 2(\bmod p)$, then $L_{n} \equiv 2\left(\bmod p^{2}\right)$;
(b) if $L_{n} \equiv-2(\bmod p)$, then $L_{n} \equiv-2\left(\bmod p^{2}\right)$ 。

B-729 Proposed by Lawrence Somer, Catholic University of America, Washington, D.C.

Dedicated to Dr. A. P. Hillman
Let $\left(H_{n}\right)$ denote the second-order recurrence defined by
$H_{n+2}=a H_{n+1}+b H_{n}$,
where $H_{0}=0, H_{1}=1$, and a and b are integers. Let p be a prime such that $p \nmid b$. Let k be the least positive integer such that $H_{k} \equiv 0(\bmod p)$. (It is wellknown that k exists.) If $H_{n} \not \equiv 0(\bmod p)$, let $R_{n} \equiv H_{n+1} H_{n}^{-1}(\bmod p)$.
(a) Show that $R_{n}+R_{k-n} \equiv \alpha(\bmod p)$ for $1 \leq n \leq k-1$.
(b) Show that $R_{n} R_{k-n-1} \equiv-b(\bmod p)$ for $1 \leq n \leq k-2$.

Acknowledgment

The editor of Elementary Problems and Solutions wishes to thank Clark Kimberling for his help in proofreading material for this section.

SOLUTIONS

A Radical Limit

B-698 Proposed by Richard André-Jeannin, Sfax, Tunisia
Consider the sequence of real numbers $\alpha_{1}, \alpha_{2}, \ldots$, where $\alpha_{1}>2$ and
(1) $\quad a_{n+1}=a_{n}^{2}-2$ for $n \geq 1$.

Find $\lim _{n \rightarrow \infty} b_{n}$, where
(2) $\quad b_{n}=\frac{a_{n+1}}{a_{1} a_{2} \ldots a_{n}}$ for $n \geq 1$.

Solution 1 by Hans Kappus, Rodersdorf, Switzerland
We claim that

$$
\lim _{n \rightarrow \infty} b_{n}=\sqrt{a_{1}^{2}-4}
$$

This follows from the formula

$$
\begin{equation*}
b_{n}^{2}=\frac{\left(a_{1}^{2}-4\right) a_{n+1}^{2}}{a_{n+1}^{2}-4} \tag{3}
\end{equation*}
$$

and the obvious fact that $\left\{a_{n}\right\}$ is an increasing sequence so $\lim _{n \rightarrow \infty} a_{n}=\infty$.
To prove (3), we proceed by mathematical induction. We have

$$
b_{1}^{2}=\frac{a_{2}^{2}}{a_{1}^{2}}=\frac{\left(a_{1}^{2}-4\right) \alpha_{2}^{2}}{\left(a_{1}^{2}-4\right) a_{1}^{2}}=\frac{\left(a_{1}^{2}-4\right) a_{2}^{2}}{\left(a_{1}^{2}-2\right)^{2}-4}=\frac{\left(a_{1}^{2}-4\right) a_{2}^{2}}{a_{2}^{2}-4}
$$

so formula (3) is true for $n=1$. Assume now that (3) holds for some integer $n=k-1$. Then, from $b_{k}=b_{k-1} a_{k+1} / a_{k}^{2}$, we have

$$
b_{k}^{2}=\frac{b_{k-1}^{2} a_{k+1}^{2}}{a_{k}^{4}}=\frac{\left(a_{1}^{2}-4\right) a_{k+1}^{2}}{\left(a_{k}^{2}-4\right) a_{k}}=\frac{\left(a_{1}^{2}-4\right) a_{k+1}^{2}}{\left(a_{k}^{2}-2\right)^{2}-4}=\frac{\left(a_{1}^{2}-4\right) a_{k+1}^{2}}{a_{k+1}^{2}-4},
$$

which completes the induction.

Solution 2 by Ioan Sadoveanu, Ellensburg, WA
Using the recurrence relation in the form

$$
a_{n+1}-a_{n}=\left(a_{n}+1\right)\left(a_{n}-2\right)
$$

implies, by induction, that $a_{n+1}>a_{n}>2$ for all $n \geq 1$.
Let x_{n} be defined by

$$
\begin{equation*}
a_{n} / 2=\cosh x_{n} . \tag{4}
\end{equation*}
$$

This is possible since the hyperbolic cosine defined on $(0, \infty)$ and valued in ($1, \infty$) is a one-to-one function.

We recall some facts concerning hyperbolic functions [1]:
$\cosh z=\frac{e^{z}+e^{-z}}{2}$
$\sinh z=\frac{e^{z}-e^{-z}}{2}$
$\cosh ^{2} z-\sinh ^{2} Z=1$
$\sinh 2 z=2 \sinh z \cosh z$
$\cosh 2 z=2 \cosh ^{2} z-1$
$\operatorname{coth} z=\frac{\cosh z}{\sinh z}$
Applying (4) to (1) gives
$2 \cosh x_{n}=\left(2 \cosh x_{n-1}\right)^{2}-2$
or
$\cosh x_{n}=2 \cosh ^{2} x_{n-1}-1=\cosh 2 x_{n-1}$
by (7). Thus, $x_{n}=2 x_{n-1}$. Repeated application of this formula yields
$x_{n}=2^{n-1} x_{1}$.

Now

$$
\begin{aligned}
\alpha_{1} \alpha_{2} \cdots \alpha_{n} & =\left(2 \cosh x_{1}\right)\left(2 \cosh 2 x_{1}\right) \cdots\left(2 \cosh 2^{n-1} x_{1}\right) \\
& =\frac{\sinh 2 x_{1}}{\sinh x_{1}} \frac{\sinh 4 x_{1}}{\sinh 2 x_{1}} \cdots \frac{\sinh 2^{n} x_{1}}{\sinh 2^{n-1} x_{1}}=\frac{\sinh 2^{n} x_{1}}{\sinh x_{1}}
\end{aligned}
$$

using (6) and cancelling. Therefore,

$$
\begin{aligned}
b_{n}=\frac{a_{n+1}}{a_{1} a_{2} \cdots a_{n}} & =\frac{\sinh x_{1}\left(2 \cosh x_{n+1}\right)}{\sinh 2^{n} x_{1}} \\
& =\frac{\sinh x_{1}}{\sinh x_{n+1}}\left(2 \cosh x_{n+1}\right)=2 \sinh x_{1} \operatorname{coth} x_{n+1}
\end{aligned}
$$

But 。

Thus,

$$
\lim _{x \rightarrow \infty} \operatorname{coth} x=\lim _{x \rightarrow \infty} \frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}=\lim _{x \rightarrow \infty} \frac{1+\frac{1}{e^{2 x}}}{1-\frac{1}{e^{2 x}}}=\frac{1+0}{1-0}=1
$$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} b_{n} & =2 \sinh x_{1} \lim _{n \rightarrow \infty} \operatorname{coth} x_{n+1}=2 \sinh x_{1} \\
& =2 \sqrt{\cosh ^{2} x_{1}-1}=\sqrt{4 \cosh ^{2} x_{1}-4}=\sqrt{a_{1}^{2}-4}
\end{aligned}
$$

Reference

1. Abramowitz \& Stegun. Handbook of Mathematical Functions. National Bureau of Standards, Washington, DC, 1966.

Also solved by Paul S. Bruckman, Blagoj S. Popov, and the proposer.

A Solution Using Periodic Orbits

B-699 Proposed by Larry Blaine, Plymouth State College, Plymouth, NH
Let a be an integer greater than 1 . Define a function $p(n)$ by

$$
p(1)=a-1 \quad \text { and } \quad p(n)=a^{n}-1-\sum p(d) \text { for } n \geq 2
$$

where \sum denotes the sum over all d with $1 \leq d<n$ and $d \mid n$.
Prove or disprove that $n \mid p(n)$ for all positive integers n.
Solution by the proposer
Consider the function $f:[0,1) \rightarrow[0,1)$ defined by $f(x) \equiv \alpha x(\bmod 1)$,
i.e.,

$$
f(x)=a x-k \text { for } k / a \leq x<(k+1) / a, k=0,1, \ldots, a-1
$$

We use the customary notation
$f^{1}(x)=f(x), \quad f^{n+1}(x)=f\left(f^{n}(x)\right)$ for $n=1,2, \ldots$,
and for $x \in[0,1)$ we define the orbit of x to be the sequence $x_{0}=x, \quad x_{n}=f^{n}(x)$ for $n=1,2, \ldots$.
We say that x is an n-periodic point if $x_{0}=x_{n}$, but $x_{0} \neq x_{i}$ for $i=1,2, \ldots$, n-1.

Now, if x is n-periodic, then $f^{n}(x)=x$. The converse is not quite true: $f^{n}(x)=x$ if and only if x is d-periodic for some positive integer d for which $d n$ (including, of course, $d=1$ and $d=n$). An easy calculation shows that there are exactly $\alpha-1$-periodic points and $a^{n}-1$ points for which $f^{n}(x)=$ x. It follows by induction that $p(n)$ is the number of n-periodic points. Since these points fall into equivalence classes (periodic orbits) of the form $\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$, it follows that $n \mid p(n)$ in all cases.

Also solved by Paul S. Bruckman and Russell Jay Hendel.
The proposer asks whether a proof can be given using elementary number theoretic techniques. Although our two other solvers gave proofs using "elementary" number theory, their proofs were not as simple as the proposer's. Hendel's proof ran for three pages and Bruckman's proof involved the Möbius inversion formula and a generalized form of Fermat's Little Theorem.

But It Doesn't Look Symmetric

B-700 Proposed by Herta T. Freitag, Roanoke, VA
Prove that for positive integers m and n,

$$
\alpha^{m}\left(\alpha L_{n}+L_{n-1}\right)=\alpha^{n}\left(\alpha L_{m}+L_{m-1}\right)
$$

Solution by Paul S. Bruckman, Edmonds, WA

$$
\begin{aligned}
& \text { Let } \begin{aligned}
f(m, n)= & \alpha^{m}\left(\alpha L_{n}+L_{n-1}\right) \text {. Using } \alpha \beta=-1 \text {, we find that } \\
\alpha L_{n}+L_{n-1} & =\alpha\left(\alpha^{n}+\beta^{n}\right)+\alpha^{n-1}+\beta^{n-1} \\
& =\alpha^{n+1}-\beta^{n-1}+\alpha^{n-1}+\beta^{n-1} \\
& =\alpha^{n}(\alpha-\beta)=\alpha^{n} \sqrt{5} .
\end{aligned}
\end{aligned}
$$

Therefore, $f(m, n)=\alpha^{m+n} \sqrt{5}$, from which we see that $f(m, n)=f(n, m)$.
Solvers found various methods of showing that $f(m, n)$ is symmetric:
Melham showed that $f(m, n)=\alpha^{m+n+1}+\alpha^{m+n-1}$.
Singh showed that $f(m, n)=\alpha^{m+n-1}\left(\alpha^{2}+1\right)$.
Brown notes that the result follows from problem $B-538\left(\sqrt{5} \alpha^{n}=\alpha L_{n}+L_{n-1}\right)$. Haukkanen generalized by showing that the following are symmetric in m and n :

$$
\beta^{m}\left(\beta L_{n}+L_{n-1}\right), \quad \alpha^{m}\left(\alpha F_{n}+F_{n-1}\right), \quad \beta^{m}\left(\beta F_{n}+F_{n-1}\right)
$$

Also solved by Michel Ballieu, Brian D. Beasley, Glenn Bookhout, Scott H. Brown, Russell Euler, C. Georghiou, Pentti Haukkanen, Russell Jay Hendel, Joseph J. Kostal, Graham Lord, Ray Melham, Blagoj S. Popov, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Lawrence Somer, and the proposer.

A Pair of Triangles with Common Sides

B-701 Proposed by Herta T. Freitag, Roanoke, VA
In triangles $A B C$ and $D E F, A C=D F=5 F_{2 n}, B C=L_{n+2} L_{n-1}, E F=L_{n+1} L_{n-2}$, and $A B=D E=5 F_{2 n+1}-L_{2 n+1}+(-1)^{n-1}$. Prove that $\angle A C B=\angle D F E$.
[Nov.

Solution by the proposer
Let $L_{n+1}=x, L_{n}=y, b=5 F_{2 n}, c=A B, a=L_{n+2} L_{n-1}, d=L_{n+1} L_{n-2}, e=D F$, and $f=D E$. Since

$$
\begin{aligned}
& L_{n+2} L_{n-1}=\left(L_{n+1}+L_{n}\right)\left(L_{n+1}-L_{n}\right), \\
& 5 F_{2 n}=5 F_{n} L_{n}=\left(L_{n+1}+L_{n-1}\right) L_{n}=\left(2 L_{n+1}-L_{n}\right) L_{n}, \\
& L_{n+1} L_{n-2}=L_{n+1}\left(2 L_{n}-L_{n+1}\right),
\end{aligned}
$$

and

$$
5 F_{2 n+1}-L_{2 n+1}+(-1)^{n-1}=L_{2 n}+L_{2 n+2}-L_{2 n+1}+(-1)^{n-1}
$$

and where, furthermore,

$$
L_{2 n}+L_{2 n+2}=L_{n+1}^{2}+L_{n}^{2} \quad \text { and } \quad L_{2 n+1}+(-1)^{n}=L_{n+1} L_{n}
$$

we the̊refore have

$$
a=x^{2}-y^{2}, \quad b=y(2 x-y)=e, \quad c=x^{2}-x y+y^{2}=f, \quad d=x(2 y-x)
$$

Now, using the Law of Cosines for triangle $A B C$, we find

$$
\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
$$

However, $a^{2}+b^{2}-c^{2}=2 x^{3} y-x^{2} y^{2}-2 x y^{3}+y^{4}=a b$. Thus, $\cos C=1 / 2$; hence $\angle C=\pi / 3$ 。

Similarly, for triangle $D E F$,

$$
d^{2}+e^{2}-f^{2}=-2 x^{3} y+5 x^{2} y^{2}-2 x y^{3}=d e,
$$

from which we get $\cos F=1 / 2$; hence $\angle F=\angle C=\pi / 3$.
Comment by the editor:
With the same notation as in Solution l, it is straightforward to show that $c^{2}=a^{2}+a d+d^{2}$ and $a+d=b$.

By the Law of Cosines, this tells us that there is a triangle $A B G$ with sides of length $A B=c, B G=\alpha$, and $G A=d$ and that $\angle A G B=120^{\circ}$ 。

Extend side $A G$ past G for a distance a to the point C. Then, since $\angle B G C=$ 60°, triangle $B G C$ is equilateral and $B C=\alpha$. Draw a line through A parallel to $B G$. and meeting $C B$ extended at F. Thus, $\angle A F C=\angle G B C=60^{\circ}$; therefore, $\triangle A F C$ is also equilateral. Thus $B F=d$ and $A F=a+d=b$.

Giving labels D and E to points A and B, respectively, we thus see our two triangles $A B C$ and $D E F$ of the problem proposal and have also shown that $\angle A C B=$ $\angle D F E=60^{\circ}$.

Also solved by Paul S. Bruckman, C. Georghiou, Russell Jay Hendel, Ray Melham, Bob Prielipp, and H.-J. Seiffert. A wonderful 6-page solution (with 7 lemmas) was also received, but the solver forgot to print his or her name on the solution sheets, so proper credit cannot be assigned.

A Comparison of Continued Fractions

B-702 Proposed by L. Kuipers, Sierre, Switzerland
For n a positive integer, let

$$
x_{n}=F_{n}+\frac{1}{L_{n}+\frac{1}{F_{n}+\frac{1}{L_{n}+\frac{1}{\ddots}}}} \text { and } y_{n}=F_{n}+\frac{1}{F_{n+1}+\frac{1}{F_{n}+\frac{1}{F_{n+1}+\frac{1}{\ddots \cdot}}}} .
$$

(a) Find closed form expressions for x_{n} and y_{n}.
(b) Prove that $x_{n}<y_{n}$ when $n>1$.

Solution to part (a) by C. Georghiou, University of Patras, Patras, Greece
Assuming convergence, we have

$$
x_{n}=F_{n}+\frac{1}{L_{n}+\frac{1}{x_{n}}} \quad \text { and } \quad y_{n}=F_{n}+\frac{1}{F_{n+1}+\frac{1}{y_{n}}}
$$

Solving these equations for x_{n} and y_{n}, respectively, we find

$$
x_{n}=\frac{F_{n}}{2}\left[1+\sqrt{1+\frac{4}{F_{n} L_{n}}}\right] \quad \text { and } \quad y_{n}=\frac{F_{n}}{2}\left[1+\sqrt{1+\frac{4}{F_{n} F_{n+1}}}\right] .
$$

(The negative roots of the quadratics must be rejected since x_{n} and y_{n} are clearly positive.)

Solution to part (b) by Sahib Singh, Clarion University of Pennsylvania, Clarion, PA

It is obvious that $x_{1}=y_{1}$. For $n>1$, from the we11-known formula $L_{n}=$ $F_{n+1}+F_{n-1}$, we see that $F_{n+1}<L_{n}$. Applying this inequality to the formulas for x_{n} and y_{n} shows that $y_{n}>x_{n}$ when $n>1$.

Most solvers ignored the question of convergence. Unless you know that the continued fractions converge, the operations above cannot be justified.

Proof of convergence by H.-J. Seiffert, Berlin, Germany
For positive integers a and b, let

$$
z=a+\frac{1}{b+\frac{1}{a+\frac{1}{b+\frac{1}{\ddots \cdot}}}}
$$

If p_{k} / q_{k} denotes the $k^{\text {th }}$ convergent of z, then, for all positive integers k :
$p_{0}=a, \quad p_{1}=a b+1, \quad q_{0}=1, \quad q_{1}=b$,
$p_{2 k}=a p_{2 k-1}+p_{2 k-2}, \quad p_{2 k+1}=b p_{2 k}+p_{2 k-1}$,
$q_{2 k}=a q_{2 k-1}+q_{2 k-2}, \quad q_{2 k+1}=b q_{2 k}+q_{2 k-1}$.

It follows that the sequences $\left(p_{2 k}\right)$ and $\left(q_{2 k}\right)$ satisfy

$$
\begin{array}{lll}
p_{0}=a, & p_{2}=a(a b+2), & p_{2 k}=(a b+2) p_{2 k-2}-p_{2 k-4}, \\
q_{0}=1, & q_{2}=a b+1, & q_{2 k}=(a b+2) q_{2 k-2}-q_{2 k-4} .
\end{array}
$$

These are second-order linear recurrences; and using standard methods, we find that $\quad p_{2 k}=a\left(t_{1}^{k+1}-t_{2}^{k+1}\right) / D \quad$ and $\quad q_{2 k}=\left(\left(t_{1}-1\right) t_{1}^{k}-\left(t_{2}-1\right) t_{2}^{k}\right) / D$
where $t_{1}=(a b+2+D) / 2$ and $t_{2}=(a b+2-D) / 2$ are the roots of $t^{2}-(a b+2) t+1=0$ and $D=\sqrt{a b(a b+4)}$.

$$
\begin{aligned}
& \text { Since } t_{1}>t_{2}>0, \text { we find that } \\
& \begin{aligned}
\lim _{k \rightarrow \infty} \frac{p_{2 k}}{q_{2 k}} & =\lim _{k \rightarrow \infty} \frac{a\left(t_{1}^{k+1}-t_{2}^{k+1}\right)}{\left(t_{1}-1\right) t_{1}^{k}-\left(t_{2}-1\right) t_{2}^{k}}=\lim _{k \rightarrow \infty} \frac{a\left(1-\left(\frac{t_{2}}{t_{1}}\right)^{k+1}\right)}{\left(t_{1}-1\right) \frac{1}{t_{1}}-\frac{t_{2}-1}{t_{1}}\left(\frac{t_{2}}{t_{1}}\right)^{k}} \\
& =\frac{a}{1-\frac{1}{t_{1}}}=\frac{a t_{1}}{t_{1}-1} .
\end{aligned}
\end{aligned}
$$

In a similar manner, we find that

$$
\lim _{k \rightarrow \infty} \frac{p_{2 k+1}}{q_{2 k+1}}
$$

has this same value. Thus,

$$
\lim _{k \rightarrow \infty} \frac{p_{k}}{q_{k}}
$$

exists and the continued fraction converges to this value.
One could also have noted convergence by quoting from a standard text on continued fractions, such as Theorem 3.5 from [1], which states that any simple continued fraction (positive entries and I's in the numerators) converges. Seiffert's proof, though, not only proves convergence and finds the limit, but also gives the value of all the convergents.

Reference

1. C. D. Olds. Continued Fractions. Washington, D.C.: Mathematical Association of America (New Mathematics Library), 1963.

Also solved by Charles Ashbacher, Paul S. Bruckman, Russell Euler, Herta T. Freitag, C. Georghiou, Russell Jay Hendel, Hans Kappus, Carl Libis, Graham Lord, Ray Melham, Bob Prielipp, H.-J. Sieffert, Sahib Singh, and the proposer.

