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1. INTRODUCTION 
The Fibonacci cube [6] is a new class of graphs that are inspired by the famous numbers. 

Because of the rich properties of the Fibonacci numbers [1], the graph also shows interesting 
properties. For a graph with AT nodes, it is known [6] that the diameter, the edge connectivity, 
and the node connectivity of the Fibonacci cube are in the order of 0(log N), which are similar to 
the Boolean cube (or hypercube, «-cube, cosmic cube [9]). A possible application of the 
Fibonacci cube is in the interconnection of large-scale multi-computers or distributed networks. 
Here we show that the Fibonacci cube has attractive recurrent structures (called self-similarity, 
§2) in the following sense: 
1. A Fibonacci cube can be decomposed into subgraphs which are also Fibonacci cubes by 

themselves; 
2. By suitably defining equivalence classes of vertices in the Fibonacci cube and merging the 

edges between vertices in different classes in a natural fashion, the resulting graph (of the 
equivalence classes) is again a Fibonacci cube. 
This structural recurrence is useful to derive (divide-and-conquer) algorithms for a parallel 

computer based on the Fibonacci cube [6]. It is also useful to derive the embeddings of other 
types of graphs [8]. (See also §4 for discussions.) 

This paper is organized as follows. Section 2 defines the Fibonacci cube based on the 
Fibonacci representation of integers. Section 3 provides a characterization of the new graph and 
discusses various decompositions. Section 4 briefly summarizes the results that are presented and 
discusses possible applications. The rest of Section 1 lists notations to be used throughout this 
paper. 

A graph G is a pair (V, E), where V denotes the set of vertices (or, alternatively, nodes) and 
E the set of edges. The following terminology and notations will be used [3]: 
• We write G2 e Gx (or, alternatively, Gt 3 G2) if G2 is a subgraph of Gx. Write Gx = G2 if the 

two graphs are isomorphic. 

• A subgraph of a graph G = (V, E) induced by a subset of its vertices, V e V, is the graph 
(V\ E>). where E' = {(/, j)eE:i, j e F } 

• We write Gl^>G2 to denote the graph (V1UV2,E1KJE2), and Glr^G2 to denote (fjoJ^, 
E1r\E2), and UJL/Q = G 1 u G 2 u - u G r 

• If G2r\G3> = ($, (/>), i.e., they are disjoint, then we write Gx = G2^G3 instead of G2 uG3) to 
emphasize that Gx consists of two disjoint subgraphs. Also, for convenience, write 
U7=/ Gl-m-G if the graphs are all isomorphic, i.e., Gt = G for 1 < i < m. 
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2. DEFINITION OF FIBONACCI CUBE 
The Fibonacci cube can be defined by using the Fibonacci representation of integers. 

Definition: Assume that i is an integer, and 0 < i < Fn9 where n > 3. The order-n Fibonacci code 
(or, simply, Fibonacci code, if n is implicit) of i is a sequence of n-2 binary digits 
(Vi,...,b3,b2)F, where 
I. hj -bj+l = 0 for 2 < j < {n-2), and 

Example: By Zeckendorfs theorem [10], any natural number can be uniquely represented in its 
Fibonacci code. The Fibonacci representation of an integer N > 0 can be obtained by using the 
following greedy approach [4]. First find the greatest Fk that is less than or equal to N9 assign a 
" 1 " to the bit that corresponds to Fk9 then proceed recursively for N- Fk until the remainder is 0. 
The unassigned bits are 0's. Here the integers from 1 to 20 are given in this notation: 

0 = (000000),, 1= (000001),, 2 = (000010),, 3 = (000100),, 4 = (000101),, 5 = (001000),, 
6 = (001001),, 7 = (001010),, 8 = (010000),, 9 = (010001),, 10 = (010010),, 11= (010100),, 

12 = (010101),, 13 = (100000),, 14 = (100001),, 15 = (100010),, 16 = (100100),, 17 = (100101),, 
18 = (101000),, 19 = (101001),, 20 = (101010),. 

Remarks: Notice that in the Fibonacci code, the rightmost bit corresponds to F2. rather than Fv 

Note also that no consecutive l's appeared in the Fibonacci codes; to represent a number between 
0 and Fn -1 requires n- 2 bits. Therefore, to represent the number 21 = (1000000)^ requires an 
additional bit (cf. the preceding example). • 

Let I = (bn_l9...9b39b2) and J = (cn_1,...,c39c2) denote two sequences of 0's and l's. The 
Hamming distance between / and J, denoted by H(I,J), is the number of bits where the two 
sequences differ. 
Definition [Fibonacci Cube of Order nj: Let F(i) denote the Fibonacci code of i. The 
Fibonacci cube of order n, denoted by Tn9 is a graph (Vn9 E„)9 where V„ = {09l9...9Fn-l) and 
En = {QJ):H(F(i),FU)) = l, 0<iJ<Fn-l}. Define T0 = (£ ft. • 

Figure 1 shows the Fibonacci cubes Tt for 1 < 7 < 7. 
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FIGURE 1. Fibonacci Cubes 
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Remarks: 
1. The definition of Fibonacci cube parallels that of Boolean cube (hypercube). Specifically, the 

Boolean cube of dimension n, denoted by Bn, is a graph (V^ En), where Vn - {0,1,..., 2n -1} 
and (ij) eEn if mdorAy if H(IB,JB) = I, where IBmdJB denote the (ordinary) binary 
representation of/ andj, 0 < /, j < 2n -1 (Fig. 2). 

2. The preceding definition of the Fibonacci cube can be modified to accommodate a Fibonacci 
cube of size (i.e., number of nodes) Nfoi an arbitrary integer N > 1 [6], However, as we will 
see, when the size of the cube is a Fibonacci number, the Fibonacci cube has a recurrent 
structure and hence is more desirable. 

0000 0001 D 1000 1001 

FIGURE 2. A Boolean Cube 

3, RECURSIVE DECOMPOSITIONS OF THE FIBONACCI CUBE 
In [6] it is shown that the Fibonacci cube of order n, where w>2, contains two disjoint 

subgraphs that are isomorphic to T ^ and Fw_2, respectively (with proper renaming of the vertices 
in Tn_2); moreover, there are exactly Fn_2 edges linking the two subgraphs together. 

Theorem 1 (Characterization of the Fibonacci Cube): Let Tn - (Vn, En) denote the Fibonacci 
cube of order n, where n > 2. Let LOW(w) (resp., HIGH («)) denote the subgraph induced by the 
set of nodes in {0,1, ...9F„_l -1} (resp., {i^_1? .~9F„-1]). Then 

1. LOW(TI) = 1 ^ and HIGH(n) = Tn_2; 

2. L e t O ^ i ^ F ^ - l a n d F ^ ^ j ^ F , - ! . (i, j) GY„ if and only if j-i = Fn_v 

Proof: (We refer to [6].) • 

Example: (Fig. 1). F6 can be decomposed into two subgraphs that are isomorphic to F5 and F4, 
respectively. There are F4 = 3 edges connecting the two subgraphs. 

The above characterization can be expressed in terms of Fibonacci codes. 

Corollary 1: Assume that n > 2. Let G0 (resp., Gx) denote the subgraph of Tn induced by the 
set of vertices {i\i = {0bn_2bn_v..b2)F} (resp., {J:j = (lbn_2bn_v..b2)F)). Then 

2. Let / = (0bn_2bn_3...h2)F GG0 mdj = (Ib^K-i-hDF eGv (/, j) GF„ if and only if bk = bf
k 

foin-2>k>2. 

Proof (outlines): 

Statement 1: Let i = (bn_1...b2)F. There are two cases: 
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1. 0 < i < Fn_x, in this case bn_x = 0. 
2. Fn_x < / < F„, in this case bn_l = 1. 
The result then follows by observing that G0 = LOW(w) and Gx = fflGH(w). 
Statement 2 follows from Statement 2 of Theorem 1. • 

3.1 A Generalization 

A generalization of Theorem 1 can be obtained by applying the decomposition recursively. 
Recall that U7=/ Gt = m- G if Gt = G for all 1 < i < m. 

Example: In Figure 1 we see that T6 contains a subgraph T5 and a subgraph T4 (after renaming 
vertices). Since T5 can be decomposed into a subgraph T4 and a subgraph T3, so T6 contains two 
disjoint T4 and one F3. Using the notations introduced, we will write T6 z> (2 • F4 ^ T3). 

Theorem 2: Assume that 2<k<n. The Fibonacci cube of order n (Yn) admits the following 
decompositions: 

(h) r„ s (Fn_k+l • r̂  w F„_^ • r^) . 
iVoo/* We will prove Statement (a) by induction on n. 

(Basis) If n = 2, then k = 2 and the statement can be easily verified. 
(Hypothesis) Assume that the statement is true for n<N. 
(Induction) Consider the case n — N +1. By Theorem 1, T^+i consists of one T^ and one 

TN_X. By hypothesis, for any k between 2 and N-l, TN (resp., r ^ ^ ) may be divided into Fk 

copies of F^_£+1 and Fk_x copies of TN_k (resp., Fk_x^copies of r(Ar_1H/r_1)+1 and Fk_2 copies of 
!(#_!)_(£_!)). Together, the number of copies of F(Ar+1)_()t+1)+1 is Fk +Fk_x = Fk+l and the number 
of copies of r(Ar+1)_(£+1) is Fk_x + Fk_2 =Fk= ^+i)-i > which completes the proof in the case 3 < k 
< N. The case k = 2, N + 1 can be easily verified. 

Statement (b) can be proved similarly [6]. D 

Remarks: Note that the decompositions listed in the preceding lemma are based on the following 
property of Fibonacci numbers: Fn - FkFn_k+l + Fk_l-Fn_k, which holds true for all integers k and 
n [4]. In Theorem 2, the first term Fk-Fn_k+l corresponds to a subgraph of Tn which is either 
divided into (i) Fk copies of F„_^+1 or (ii) Fn_k+l copies of F^. (The second term Fk_l • Fn_k also 
suggests two possible decompositions.) Note that the decomposition in (ii) can be derived from 
(i) as follows. [Constructing (i) from (ii) is similar.] Each subgraph Tk. of (ii) is essentially con-
structed by taking one node from each of the Fk copies of Tn_k+l in (i). By construction, no two 
subgraphs from the two decompositions in (i) and (ii) share more than one node. Such 
decompositions will be referred to as orthogonal decompositions. D 

Example: Take F6 (Fig. 3) for instance. Let k = 3 and note that S = F6 = F3-F4 + F2-F3=2-3 + 
1-2. By Theorem 2, T6 can be decomposed into (Part 1) two copies of F4 and (Part 2) one copy 
of r3. In Figure 3(a), Part 1 consists of two subgraphs whose vertex sets are, respectively, 
{0,1,2} and {5,6,7}. Note that, by Theorem 2, an alternative (and orthogonal) decomposition of 
Part 1 would be to divide the same set of nodes into three copies of F3, where each F3 is formed 
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by taking one node from each copy of F4. In Figure 3(b), for example, the nodes in Part 1 are re-
partitioned into the following sets {0,5}, {1,6}, and {2,7}. Notice that no two subgraphs from 
the first partition and the second partition share more than one common node. Thus, the two par-
titions of Part 1 are orthogonal. Similarly, nodes in Part 2 can be redivided into two copies of 

Parti x Parti 

(a) A Partition of the Cube (b) Part I Re-partitioned 

(c) Deriving a Quotient Fibonacci Cube 

FIGURE 3, Decomposition of a Fibonacci Cube 

In terms of the Fibonacci codes, we have the following corollary. 

Corollary 2: Assume that n>2. Let k and d denote two integers, where 1 <k <n-2 and 
0<d<Fn_k-l. Let Gn{k,d) denote the subgraph of Tn induced by the set of vertices in 
{(K-A-2-A)F •• (h-A-2"A-k)F = d), Then 
1. Gn(k, d) = Tn_k if bn_k=0,md 

2. Gn(k,d) = T„_k_lifbn_k=l 

Proof: The argument parallels that of Theorem 2 (replace all instances of Theorem J. with Corol-
lary 1) [8]. • 

3.2 Quotient Fibonacci Cubes 
We will identify another level of recurrence with the decompositions of the Fibonacci cube in 

which the graph Tn is scaled down to a smaller Fibonacci cube. In fact, for any Tn and any integer 
k, where l<k <n-2, we can define a Quotient Fibonacci Cube Tnlk as described in the 
following. (See [2]; cf. Theorem 2.) 

We describe the idea in intuitive terms followed by a formal definition. Consider the first 
decomposition [i.e., Decomposition (a)] listed in Theorem 2. Let each of the Fk+l = Fk+Fk_l 

subgraphs (Tn_k+l or Tn_k) be considered as an equivalence class. Then each node vin Tn I k cor-
responds to such an equivalence class. The edges between two equivalence classes vx and v2 are 
given by ( vu v2) ^Tn Ik if and only if {(v1? v2):vlev1 and v2 G V2} ̂  f (In other words, the 
edges connecting nodes in two subgraphs are merged into one.) Then the resulting graph Tnl k 
of the equivalence classes is itself a Fibonacci cube (as will be proved). A similar observation 
applies to Decomposition (b). 
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Example: Consider T6 again [cf. Fig. 3(c)]. By considering each of the two copies of F4 (indi-
cated as Part 1 in Fig. 3) and the F3 (Part 2) as a single node (an equivalence class) then merging 
the edges connecting them (as described in the preceding remarks), the resulting graph is isomor-
phic to r4. 
Definition Assume that 1 < k < n-2 and 0 < d < Fk+2 -1. Let Gn(k, d) denote the subgraph of 
Tn induced by the set of vertices in {(hn_ihn_2...b2)F • (bn-ibn_2...hri_k)F

 = d}. Then the Quotient 
Fibonacci Cube Tnl k = (Vn/ k,En/ k) is given by: 

1. (V„/k = {G„(k,d):0<d<Fk+2-1}, and 

2. (G„(k,d), G„(k,d'))eEn/k if and only if d*d'md {(v„v2) er„ :vl eG„(k,d), v2 e 
G„(k,d')}*j 

Theorem 3: Let T„lk be the quotient Fibonacci cube as defined before, where \<k<n-2. 
Thenr„/^ = rfc+2. 

Proof (outlines); It is straightforward to verify the theorem for k = 1. For example, in Theorem 
1 (which corresponds to the case in which k = 1), the vertices in LOW(«) [resp.? HIGH («)] can 
be taken as an equivalence class vt (resp., v2), and edges connecting LOW(w) and HEGH(w) can 
be taken as a single edge ( vl9 v2). The resulting graph F„ /1 = ({vl9 v2}? {( vl9 v2)}) is isomorphic 
to r3. 

The general case can be proved inductively by noting that each of the subgraphs can be 
decomposed recursively and there are links between these subgraphs (Theorem 1). • 

Example: Figure 4 shows that Tn 14 can be derived from Tn in four refining steps. In the first 
step (when k = 1) decomposing Tn into (a) rn-1 and (b) Tn_2. By interpreting the edges between 
r ^ j and Tn_2 as a single edge, the resulting graph is F^ / 1 , which is isomorphic to F3 (cf. Fig. 1). 
In the subsequent steps (k = 2, 3, 4), Part (a) and Part (b) are recursively decomposed. The 
resulting graph F„ /4 is isomorphic to F6 (cf. Fig, 1). 

- w - l 

r - F 
1 TI/4 - L 6 

FIGURE 4. A Quotient Fibonacci Cube 
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3.3 Other Recursive Decompositions of Fibonacci Cubes 
There are other conceivable ways to decompose the Fibonacci cube. We list the following 

while omitting the details of their proofs. 
Lemma 1: Let Tn denote the Fibonacci cube of order n. Assume that n>\. Then 

(a) r 2 „ D ( G ; w G 3 ^ G 5 V . - ^ J , whereG;=F^for^ = 1,3,5,..., (2«- l ) . 

(b) Tn+2^{G{\*)GiwG^—y&)Gh where G'k =Tk for k = 1,2,3,...,«. 

Proof (outlines): Part (a) of this lemma is inspired by the known recurrence of Fibonacci num-
bers: F2n = 

^i<k<n ̂ 2k-\ • Specifically, the graph T2n can be decomposed into a copy of T2n_l and a 
copy of T2n_2. The latter can be decomposed further into T2n_3 and T2n_4. Decompose T2n_4 
again and we have T2n_5 and so on. 

Part (b) is based on Fn+2 = Hi<k<nFk + l. • 
Example Again consider T6. Since 6 = 2-3, by Lemma 1(a), it can be decomposed into three 
subgraphs: T1? F3, and F5. Also, since 6 = 4-1-2, by Lemma 1(b), it can be decomposed into one 
Fl3 one F2, one F3, and one F4, and all of the subgraphs are disjoint. 

4. DISCUSSION AND CONCLUSION 
A possible application of the Fibonacci cube is in the interconnection of large-scale multi-

computers, where a node corresponds to a processor and an edge to a communication link. In 
[6], it is shown that the Fibonacci cube contains about 1/5 fewer edges than the Boolean cube for 
the same number of vertices. Considering the relative sparsity in connections and the asymmetry 
in structure, it may well be expected that the Fibonacci cube cannot be as flexible as the Boolean 
cube, and certain functionality may be lost. For example, in the context of interconnection 
networks, the communication delays may become greater than that based on the Boolean cube, 
and the power of embedding (i.e., emulating other types of graphs) may be inferior to the Boolean 
cube. Nevertheless, because of the rich properties of Fibonacci numbers, we have been able to 
show here that the Fibonacci cubes can be flexibly decomposed into subgraphs of same kind (we 
are tempted to call this property self-similarity). In [8], by using these recursive decompositions, 
it is shown that the Fibonacci cube is flexible enough to embed common graphs such as linear 
arrays, rings, certain kinds of meshes, tori (mesh with wraparound), and trees, all with perfect 
dilation and expansion. 

The recursive nature of the Fibonacci cube also has implications to the design and analysis of 
algorithms for parallel computers that are based on the Fibonacci cube. For example, to find the 
sum (product, maximum, and other associative operations) of a sequence of numbers, the data 
items can be distributed on the nodes (processors) of the Fibonacci cube. The sum can be found 
in a divide-and-conquer fashion, which matches well with the recursive decomposition of the 
graph. In [6], by using this approach, several routing algorithms have been designed for computer 
architectures based on the Fibonacci cube. 

Perhaps trie most interesting (and plausible) application of the self-similarity is in fault-
tolerant computing. Again consider a parallel computer based on the Fibonacci cube. When 
some links or nodes of the computer fail, other functioning links and nodes may still be 
reconfigured to a smaller (but similar) graph and continue to operate (albeit with a degraded 
performance). In a multiple-processor system, one can also take advantage of this self-similarity 
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to allocate processing resources to multiple users (each user could be assigned a subcube of some 
size). 

We call for further investigation of this new class of graphs. 
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A NEW BOOK ON LIBER ABACI 

The editor has recently been informed that a new book on Fibonacci's Liter Abaci has 
appeared in Germany. The editor has been told that the book was written by Professor 
Heinz Liineburg, a mathematics professor at the University of Kaiserslautern. The 
book's title was said to be LEONARDI PISANI LIBER ABACI ODER 
LESEVERGNUGEN EINES MATHEMATIKERS. The publisher was reported as BI 
Verlag, Mannheim, and the cost was said to be 68 Deutsch Marks. 
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