CYCLIC BINARY STRINGS WITHOUT LONG RUNS OF LIKE (ALTERNATING) BITS

W. Moser
McGill University, Montreal, Canada H3A2K6
(Submitted February 1991)

1. A binary n-bit cuclic string (briefly n-CS) is a sequence of $n 0$'s and 1 's (the bits), with the first and last bits considered to be adjacent (i.e., the first bit follows the last bit). This condition is visible when the string is displayed in a circle with one bit "capped": the capped bit is the first bit and reading clockwise we see the second bit, the third bit, and so on to the $n^{\text {th }}$ bit (the last bit). In an n-CS, a subsequence of consecutive bits is a run. Motivated by a problem of genetic information processing, Agur, Fraenkel, and Klein [1] derived formulas for the number of n-CSs with no runs 000 nor 111 (i.e., all runs of like bits have length ≤ 2) and for the number with no runs 010 nor 101 (i.e., all runs of alternating bits have length ≤ 2). These are the cases $w=2$ of

$$
L_{\leq w}(n)=\text { the number of } n \text {-CSs in which all runs of like bits have length } \leq w
$$

and

$$
A_{\leq w}(n)=\text { the number of } n \text {-CSs in which all runs of alternating bits have length } \leq w \text {. }
$$

In this note we prove the

Theorem:

$$
L_{\leq w}(n)= \begin{cases}2^{n}, & \text { if } 1 \leq n \leq w-1, \\ F_{w}(n)+D_{w}(n), & \text { if } n \geq w,\end{cases}
$$

and

$$
A_{\leq w}(n)= \begin{cases}2^{n}, & \text { if } 1 \leq n \leq w-1, \\ F_{w}(n)+(-1)^{n} D_{w}(n), & \text { if } n \geq w,\end{cases}
$$

where

$$
F_{w}(0)=w, \quad F_{w}(n)=2^{n}-1, \quad 1 \leq n \leq w-1,
$$

$$
\begin{equation*}
F_{w}(n)=F_{w}(n-1)+F_{w}(n-2)+\cdots+F_{w}(n-w), \quad n \geq w, \tag{1}
\end{equation*}
$$

and

$$
D_{w}(n)= \begin{cases}w, & \text { if } n \geq 1 \text { and } w+1 \mid n, \tag{2}\\ -1, & \text { if } n \geq 1 \text { and } w+1 \nmid n .\end{cases}
$$

Furthermore,

$$
\begin{equation*}
L_{\leq w}(n) \sim A_{\leq w}(n) \sim c \alpha^{n} \tag{3}
\end{equation*}
$$

where c is a constant (which depends only on w) and

$$
2-\frac{2}{2^{w}}<\alpha<2-\frac{1}{2^{w}} .
$$

2. Consider for any n-CS

$$
x=x_{1} x_{2} x_{3} \ldots x_{n}, x_{i}=0,1,
$$

the n-CS

$$
T(x)=y_{1} y_{2} \ldots y_{n,} \quad y_{i}= \begin{cases}0, & \text { if } x_{i}=x_{i-1}, i=1,2, \ldots, n\left(x_{0}=x_{n}\right) . \\ 1, & \text { if } x_{i} \neq x_{i-1},\end{cases}
$$

For example,

$$
\begin{aligned}
& T(001110010110001111)=101001011101001000 \\
& T(101100011101010111)=011010010011111100 \\
& T(110011001100100000)=101010101010110000
\end{aligned}
$$

Thus, when passing over the bits of $x, T(x)$ records the changes (from 0 to 1 or from 1 to 0) by a 1 , and records no change (from 0 to 0 or from 1 to 1) by a 0 .

Of course

$$
T(\tilde{x})=T(x),
$$

where \tilde{x} is the complementary n-CS

$$
\tilde{x}=y_{1} y_{2} y_{3} \ldots y_{n}, \quad y_{i}= \begin{cases}1, & \text { if } x_{i}=0 \\ 0, & \text { if } x_{i}=1\end{cases}
$$

However, for any two different n-CSs u and v, both with first bit $1, T(u) \neq T(v)$. Indeed, T is bijective between the set of $2^{n-1} n$-CSs with first bit 1 and the set of $2^{n-1} n$-CSs with an even number of 1's. Thus, an n-CS x with first bit 1 corresponds to an n-CS $T(x)$ with an even number of 1's, and then a run of w like bits in x corresponds to a run of $w-10$'s in $T(x)$, while a run of w alternating bits in x corresponds to a run of $w-1$ 1's in $T(x)$.

Hence,
x is an n-CS with first bit 1 and all runs of like bits have length $\leq w$
if and only if
$T(x)$ is an n-CS with an even number of 1's and all runs of 0 's have length $\leq w-1$,
so we have

$$
L_{\leq w}(n)=2 B_{w-1}^{e}(n), n \geq 1,
$$

where
$B_{w}^{e}(n)=$ the number of n-CSs with an even number of 1's and all runs of 0 's have length $\leq w$.
Also,
x is an n-CS with first bit 1 and all alternating runs have length $\leq w$ if and only if
$T(x)$ is an n-CS with an even number of 1's and all runs of 1's have length $\leq w-1$
if and only if
$\widetilde{T(x)}$ is an n-CS with an even number of 0's and all runs of 0's have length $\leq w-1$ if and only if
n is even, $\overparen{T(x)}$ has an even number of 1's and all runs of 0 's have length $\leq w-1$
n is odd, $\widetilde{T(x)}$ has an odd number of 1's and all runs of 0's have length $\leq w-1$,
and we have

$$
A_{\leq w}(n)= \begin{cases}2 B_{w-1}^{e}(n), & \text { if } n \text { is even } \\ 2 B_{w-1}^{o}(n), & \text { if } n \text { is odd }\end{cases}
$$

where
$B_{w}^{o}(n)=$ the number of n-CSs with an odd number of 1's and all runs of 0's have length $\leq w$.
In terms of $B_{w}(n)=B_{w}^{e}(n)+B_{w}^{o}(n)$ and $C_{w}(n)=B_{w}^{e}(n)-B_{w}^{o}(n)$,

$$
\begin{equation*}
L_{\leq w}(n)=B_{w-1}(n)+C_{w-1}(n), \quad A_{\leq w}(n)=B_{w-1}(n)+(-1)^{n} C_{w-1}(n), \quad n \geq 1 . \tag{4}
\end{equation*}
$$

In order to determine $B_{w}^{e}(n), B_{w}^{o}(n)$, and $B_{w}(n)$, we naturally investigate (for $n \geq 1, k \geq 0$, $w \geq 1)(n: k)_{w}=$ the number of n-CSs with exactly $k 1$'s $(n-k 0$'s) and all runs of 0 's have length $\leq w$. Clearly

$$
(n: 0)_{w}= \begin{cases}1, & 1 \leq n \leq w \tag{5}\\ 0, & n \geq w+1\end{cases}
$$

and

$$
(n: k)_{w}= \begin{cases}\binom{n}{k}, & 1 \leq n \leq w+k \tag{6}\\ 0, & 1 \leq k, k(w+1)<n\end{cases}
$$

where

$$
\binom{n}{k}= \begin{cases}n!/ k!(n-k)!, & 0 \leq k \leq n \\ 0, & 0 \leq n<k\end{cases}
$$

Consider an n-CS counted in $(n: k)_{w}, n \geq w+2, k \geq 2$. If the first bit is 1 (i.e., capped bit is \hat{l}), and the last 1 is followed by exactly $i 0$'s $(0 \leq i \leq w)$, delete this last 1 and the $i 0$'s which follow it and then we have an $(n-1-i)$ - CS with $k-1$ l's, first bit 1 , and every run of 0 's has length $\leq w$. If the first bit is 0 , and the first 1 is followed by $i 0$'s $(0 \leq i \leq w)$, delete this first 1 and the $i 0$'s which follow it and we then have an $(n-1-i)-C S$ with $k-11$'s, first bit 0 , and every run of 0's has length $\leq w$. Hence,

$$
\begin{equation*}
(n: k)_{w}=(n-1: k-1)_{w}+(n-2: k-1)_{w}+\cdots+(n-1-w: k-1)_{w}, k \geq 2, n \geq w+2 \tag{7}
\end{equation*}
$$

Of course,

$$
B_{w}^{e}(n)=\sum_{k=0}(n: 2 k)_{w}, \quad B_{w}^{o}(n)=\sum_{k=1}(n: 2 k-1)_{w} .
$$

From (5), (6), and (7), we deduce that

$$
\begin{aligned}
B_{w}^{e}(n) & = \begin{cases}2^{n-1}, & 1 \leq n \leq w, \\
2^{n-1}-1, & n=w+1, \\
B_{w}^{o}(n-1)+B_{w}^{o}(n-2)+\cdots+B_{w}^{o}(n-1-w), & n \geq w+2,\end{cases} \\
B_{w}^{o}(n) & = \begin{cases}2^{n-1}, & 1 \leq n \leq w+1, \\
B_{w}^{e}(n-1)+\cdots+B_{w}^{e}(n-1-w)+n-2(w+1), & w+2 \leq n \leq 2 w+1, \\
B_{w}^{e}(n-1)+B_{w}^{e}(n-2)+\cdots+B_{w}^{e}(n-1-w), & n \geq 2 w+2,\end{cases} \\
B_{w}(n) & =B_{w}^{e}(n)+B_{w}^{o}(n) \\
& = \begin{cases}2^{n}, & n=1,2, \ldots, w, \\
2^{n}-1, & n=w+1, \\
B_{w}(n-1)+\cdots+B_{w}(n-1-w)+n-2(w+1), & w+2 \leq n \leq 2 w+1, \\
B_{w}(n-1)+B_{w}(n-2)+\cdots+B_{w}(n-1-w), & n \geq 2 w+2 .\end{cases}
\end{aligned}
$$

Furthermore, the numbers $C_{w}(n)=B_{w}^{e}(n)-B_{w}^{o}(n)$ are seen to satisfy

$$
C_{w}(n)= \begin{cases}0, & 1 \leq n \leq w, \\ -1, & n=w+1, \\ w+1, & n=w+2, \\ w+3 \leq n \leq 2 w+1, \\ -1, & n \geq 2 w+2, \\ -\left\{C_{w}(n-1)+C_{w}(n-2)+\cdots+C_{w}(n-1-w)\right\}, & n \geq 2 w\end{cases}
$$

that is,

$$
C_{w}(n)= \begin{cases}0, & 1 \leq n \leq w, \\ w+1, & n \geq w+1, w+2 \mid n, \\ -1, & n \geq w+1, w+2 \nmid n .\end{cases}
$$

Now it is easy to verify that

$$
B_{w-1}(n)=F_{w}(n), n \geq w, \quad C_{w-1}(n)=D_{w}(n), n \geq w,
$$

where $F_{w}(n)$ and $D_{w}(n)$ are defined by (1) and (2), and this with (4) completes the first part of the Theorem.

It is well known that any sequence $\left\{H_{w}(n)\right\}_{n=0}$ which satisfies

$$
H_{w}(n)=H_{w}(n-1)+H_{w}(n-2)+\cdots+H_{w}(n-w), \quad n \geq w,
$$

can be written

$$
H_{w}(n)=\sum_{i=1} c_{i} \alpha_{i}^{n}, n=0,1,2, \ldots,
$$

where $\alpha_{i}=\alpha_{i}^{(w)},(i=1,2, \ldots, w)$ are the roots of

$$
\begin{equation*}
z^{w}-z^{w-1}-z^{w-2}-\cdots-z-1 \tag{8}
\end{equation*}
$$

and the $c_{i}=c_{i}^{(w)},(i=1,2, \ldots, w)$ are determined by the w equations

$$
c_{1} \alpha_{1}^{n}+c_{2} \alpha_{2}^{n}+\cdots+c_{w} \alpha_{w}^{n}=H_{w}(n), \quad n=0,1, \ldots, w-1 .
$$

This depends on the fact that $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{w}$ are distinct. This fact is easily proved: multiply (8) by $x-1$ to get $x^{w+1}-2 x^{w}+1$ which has no multiple roots because it has no roots in common with its derivative.

Cappocelli and Cull [2] have shown that exactly one of the roots of (8) is real and positive, say $\alpha=\alpha_{1}$, and it satisfies
(9) $2-\frac{2}{2^{w}}<\alpha<2-\frac{1}{2^{w}}$,
while all the other roots satisfy

$$
\frac{1}{\sqrt[w]{3}}<\left|\alpha_{i}\right|<1, \quad i=2,3, \ldots, w
$$

It follows that $H_{w}(n) \sim c \alpha^{n}$. This leads to

$$
L_{\leq 2}(n) \sim A_{\leq 2}(n) \sim\left(\frac{1+\sqrt{5}}{2}\right)^{n}
$$

and for $w \geq 2, L_{\leq w}(n) \sim A_{\leq w}(n) \sim c \alpha^{n}$, where c is a constant (which depends only on w) and α satisfies (9).

The following tables show $F_{w}(n), D_{w}(n), L_{\leq w}(n)$, and $A_{\leq w}(n)$ for $w=2,3,4$.

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$F_{2}(n)$	2	1	3	4	7	11	18	29	47	76	123	199	322	521	843
$D_{2}(n)$		-1	-1	2	-1	-1	2	-1	-1	2	-1	-1	2	-1	-1
$L_{s 2}(n)$	2	2	6	6	10	20	28	46	78	122	198	324	520	842	
$A_{\leq 2}(n)$	2	4	2	6	12	20	30	46	74	122	200	324	522	842	
n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	
$F_{3}(n)$	3	1	3	7	11	21	39	71	131	241	443	815	1499	2757	
$D_{3}(n)$	-1	-1	-1	3	-1	-1	-1	3	-1	-1	-1	3	-1		
$L_{s 3}(n)$	2	4	6	14	20	38	70	134	240	442	814	1502	2756		
$A_{s 3}(n)$	2	4	8	14	22	38	72	134	242	442	816	1502	2578		
n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	
$F_{4}(n)$	4	1	3	7	15	26	51	99	191	367	708	1365	2631	5071	
$D_{4}(n)$	-1	-1	-1	-1	4	-1	-1	-1	-1	4	-1	-1	-1		
$L_{s 4}(n)$	2	4	8	14	30	50	98	190	366	712	1364	2630	5070		
$A_{\leq 4}(n)$	2	4	8	14	22	50	100	190	368	712	1366	2630	5072		

REFERENCES

1. Z. Agur, A. S. Fraenkl, \& S. T. Klein. "The Number of Fixed Points of the Majority Rule." Discrete Math. 70 (1988):295-302.
2. R. M. Capocelli \& P. Cull. "Generalized Fibonacci Numbers Are Rounded Powers." In Applications of Fibonacci Numbers, ed. G. E. Bergum et al., pp. 57-62. Kluwer Academic Publishers, 1990.

AMS Classification Number: 05A05

