Those two formulas, (5) and (6), suggest the following process to generate the resistances $\Omega_{j, i}(j=0,1,2, \ldots$, and $i=-(r-1, \ldots,-1,0,1, \ldots, r-1)$ :
(a) generate $\Omega_{j, i}(i=-(r-1), \ldots,-1)$ using (6) with $\Omega_{j-1, i+1}$ and $s$ of each $\Omega_{j-k, i+k}$ for $k=$ $2, \ldots, r$;
(b) $\Omega_{j, 0}=1$;
(c) gernerate $\Omega_{j, i}(i=1,2,3, \ldots, r-1)$ using (5) with $\Omega_{j, i-1}$ and $s$ of each $\Omega_{j, i-k}$ for $k=2$, ..., $r$.

Note that the ratios we are interested in correspond to $\Omega_{j, 1}(j=0,1,2,3, \ldots)$.

## REFERENCES

1. J. Atkins \& R. Geist. "Fibonacci Numbers and Computer Algorithms." Coll. Math. J. 18 (1987):328-36.
2. B. S. Davis \& T. A. Davis. "Fibonacci Numbers and the Golden Mean in Nature." Math. Scientist 14 (1989):89-100.
3. F.Dubeau. "On $r$-Generalized Fibonacci Numbers." Fibonacci Quarterly 27.3 (1989):22129.
4. J. Flores. "Direct Calculation of $k$-Generalized Fibonacci Numbers." Fibonacci Quarterly 5.3 (1967):259-66.
5. D. M. Gonzàlez-Velasco. "Fun with Fibonacci; or, What To Do after the BC Calculus Exam." Mathematics Teacher (1988):398-400.
6. R. V. Jean. "The Fibonacci Sequence." UMAP Journal 5 (1984):23-47.
7. S. L. Levine. "Suppose More Rabbits Are Born." Fibonacci Quarterly 26.4 (1988):306-11.
8. E. P. Miles, Jr. "Generalized Fibonacci Numbers and Associated Matrices." Amer. Math. Monthly 67 (1960):745-52.

AMS numbers: 11B39, 05A10, 94C05

## ERRATUM FOR "COMPLEX FIBONACCI AND LUCAS NUMBERS, CONTINUED FRACTIONS, AND THE SQUARE ROOT OF THE GOLDEN RATIO"

## The Fibonacci Quarterly 31.1 (1993):7-20

It has been pointed out to me by a correspondent who wished to remain anonymous that the number 185878941, which was printed in the "loose ends" Section 7 on page 19 of the paper, has a factor 3. This, however, was a misprint for 285878941 , which is $\left(\ell_{19}^{2}+\ell_{19}^{\prime 2}\right) / 2$, and the same correspondent has checked that this is a prime by using Mathematica. The misprint was important because it appeared to undermine one of the interesting conjectures on that page (and incidentally calls into question my ability to "cast out 3 s "!). The same correspondent pointed out that $34227121=137 \times 249833$.

