# GENERATING SOLUTIONS FOR A SPECIAL CLASS OF DIOPHANTINE EQUATIONS 

Pasquale J. Arpaia<br>Department of Mathematics and Computer Science, St. John Fisher College, Rochester, NY 14618<br>(Submitted August 1992)

Let $p=p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a polynomial with positive integer coefficients. In this paper we shall discuss some methods for generating solutions for the equation

$$
\begin{equation*}
p+y^{2}=z^{2} . \tag{1}
\end{equation*}
$$

The approach we use is to start with a method for generating solutions for the equaiton

$$
\begin{equation*}
x^{2}+y^{2}=z^{2}, \tag{2}
\end{equation*}
$$

and show how the method is extended to equation (1) or to special cases of (1).

## 1. THE RULE OF PYTHAGORAS AND THE RULE OF PLATO

According to Dickson [1], it was Pythagoras who showed that, if we start with the odd integer $a$, let $b=\frac{1}{2}\left(a^{2}-1\right)$ and $c=b+1$, then $(a, b, c)$ is a solution of (2).

Again, according to Dickson [1], it was Plato who showed that, if we start with the even integer $a$, let $b=\frac{1}{4} a^{2}-1$ and $c=b+2$, then ( $a, b, c$ ) is also a solution of (2).

The methods of Pythagoras and Plato are extended to (1) by the following proposition.
Proposition 1: Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive integers and let $a=p\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.
i. If $a$ is odd, let $b=\frac{1}{2}(a-1)$ and $c=b+1$, then $\left(a_{1}, a_{2}, \ldots, a_{n}, b, c\right)$ is a solution of (1).
ii. If $a \equiv 0(\bmod 4)$, let $b=\frac{1}{4} a-1$ and $c \equiv b+2$, then $\left(a_{1}, a_{2}, \ldots, a_{n}, b, c\right)$ is a solution of (1).
iii. If $a \equiv 2(\bmod 4)$, then it is impossible to find integers $b$ and $c$ such that $\left(a_{1}, a_{2}, \ldots, a_{n}, b, c\right)$ is a solution of (1).

Proof: For i and ii, write $c^{2}-b^{2}$ as $(c-b)(c+b)$, substitute and simplify. If $a \equiv 2(\bmod 4)$, then, for integers $b$ and $c, a+b^{2} \equiv 2$ or $3(\bmod 4)$ depending on whether $b$ is even or odd, respectively, but $c^{2} \equiv 0$ or $1(\bmod 4)$ depending on whether $c$ is even or odd, respectively.

## 2. THE METHOD OF RECURSION

Let ( $a, b, c$ ) be a solution of (2). Let $d=c-b, a_{1}=a+d, b_{1}=a+b+\frac{d}{2}$, and $c_{1}=b_{1}+d$ In [2] I showed that ( $a_{1}, b_{1}, c_{1}$ ) is also a solution of (2). Let us call this method the "method of recursion." The following proposition extends the method of recursion to the equation

$$
\begin{equation*}
k_{1} x_{1}^{2}+k_{2} x_{2}^{2}+\cdots+k_{n} x_{n}^{2}+m+y^{2}=z^{2} . \tag{3}
\end{equation*}
$$

Proposition 2: Let $\left(a_{1}, a_{2}, \ldots, a_{n}, b, c\right)$ be a solution of equation (3) and let $d=c-b$. For $i=1$ to $n$ define

$$
a_{i}^{\prime}=a_{i}+d, b^{\prime}=\Sigma k_{i} a_{i}+b+\frac{d \Sigma k_{i}}{2}, \text { and } c^{\prime}=b^{\prime}+d .
$$

Then ( $a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}, b^{\prime}, c^{\prime}$ ) is also a solution of (3).
Proof: Substitute $a_{i}+d$ for $a_{i}^{\prime}$ and simplify to obtain

$$
\Sigma k_{i}\left(a_{i}^{\prime}\right)^{2}=\Sigma k_{i}\left(a_{i}+d\right)^{2}=\Sigma k_{i} a_{i}^{2}+2 d \Sigma k_{i} a_{i}+d^{2} \Sigma k_{i} .
$$

Substitute $c^{2}-b^{2}-m$ for $\sum k_{i} a_{i}^{2}$, write $c^{2}-b^{2}$ as $d(c+b)$, and factor out $d$ to obtain

$$
d\left(c+b+2 \Sigma k_{i} a_{i}+d \Sigma k_{i}\right)-m .
$$

Substitute $2 b^{\prime}-2 b$ for $2 \Sigma k_{i} a_{i}+d \Sigma k_{i}$ to obtain

$$
d\left(c+b+2 \Sigma k_{i} a_{i}+d \Sigma k_{i}\right)-m=d\left(c-b+2 b^{\prime}\right)-m .
$$

And since $c-b=c^{\prime}-b^{\prime}=d$, we obtain

$$
d\left(c-b+2 b^{\prime}\right)-m=\left(c^{\prime}\right)^{2}-\left(b^{\prime}\right)^{2}-m .
$$

Note that when $d \Sigma k_{i}$ is odd we do not obtain integer solutions (see Example 1 below). In this case, apply the recursion twice to obtain the following corollary.

Corollary Let $\left(a_{1}, a_{2}, \ldots, a_{n}, b, c\right)$ be a solution of equation (3) and let $d=c-b$. For $i=1$ to $n$ define

$$
a_{i}^{\prime}=a_{i}+2 d, b^{\prime}=2 \Sigma k_{i}\left(a_{i}+d\right)+b, \text { and } c^{\prime}=b^{\prime}+d .
$$

Then ( $a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}, b^{\prime}, c^{\prime}$ ) is also a solution of (3).
The following example illustrates the use of Proposition 1, Proposition 2, and its Corollary.
Example 1: Suppose we begin with the equation

$$
\begin{equation*}
2 x_{1}^{2}+x_{2}^{2}+2 x_{3}^{2}+4+y^{2}=z^{2} . \tag{4}
\end{equation*}
$$

If we let $x_{1}=x_{3}=1$ and $x_{2}=2$, then, by Proposition $1,(1,2,1,2,4)$ is a solution of (4). Here, $d=4-2=2$. Applying Proposition 2, we have

$$
\begin{aligned}
& a_{1}^{\prime}=3, \quad a_{2}^{\prime}=4, \quad a_{3}^{\prime}=3, \\
& b^{\prime}=2 \cdot 1+1 \cdot 2+2 \cdot 1+2+\frac{2(2+1+2)}{2}=13, \\
& c^{\prime}=15 .
\end{aligned}
$$

Hence, $(3,4,3,13,15)$ is also a solution of (4).
If we let $x_{1}=x_{2}=x_{3}=1$, then, by Proposition $1,(1,1,1,4,5)$ is a solution of (4). Here, $d=5-4=1$. Applying Proposition 2, we have

$$
\begin{aligned}
& a_{i}^{\prime}=2, \quad a_{2}^{\prime}=2, \quad a_{3}^{\prime}=2, \\
& b^{\prime}=2 \cdot 1+1 \cdot 1+2 \cdot 1+4+\frac{(2+1+2)}{2}=\frac{23}{2}, \\
& c^{\prime}=\frac{25}{2} .
\end{aligned}
$$

Hence, $\left(2,2,2, \frac{23}{2}, \frac{25}{2}\right)$ is also a solution of (4).

In this case, the solution is not an integer solution. However, if we apply the Corollary to Proposition 2, we obtain

$$
\begin{aligned}
& a_{1}^{\prime}=3, \quad a_{2}^{\prime}=3, \quad a_{3}^{\prime}=3, \\
& b^{\prime}=2(2 \cdot 2+1 \cdot 2+2 \cdot 2)+4=24, \\
& c^{\prime}=25 .
\end{aligned}
$$

Hence, (3, 3, 3, 24, 25) is also a solution of (4).

## 3. THE METHOD OF MATRICES

In [3], Hall showed that, if we mutliply a solution $(a, b, c)$ of (2) by any of the following three matrices, the product is also a solution of (2).

$$
\left[\begin{array}{lll}
1 & -2 & 2 \\
2 & -1 & 2 \\
2 & -2 & 3
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 2 \\
2 & 2 & 3
\end{array}\right] \quad\left[\begin{array}{lll}
-1 & 2 & 2 \\
-2 & 1 & 2 \\
-2 & 2 & 3
\end{array}\right]
$$

Let us call this method the "method of matrices." The following proposition extends the method of matrices to the equation

$$
\begin{equation*}
n x^{2}+y^{2}+m=z^{2} . \tag{5}
\end{equation*}
$$

Proposition 3: Let ( $a, b, c$ ) be a solution of equation (5).
i. If $n=2 k$, the product of $(a, b, c)$ and any of the following three matrices is also a solution of (5).

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 k & 1-k & k \\
2 k & -k & k+1
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 k & k-1 & k \\
2 k & k & k+1
\end{array}\right]\left[\begin{array}{ccc}
-1 & 1 & 1 \\
-2 k & k-1 & k \\
-2 k & k & k+1
\end{array}\right]
$$

ii. If $n=2 k+1$, the product of $(a, b, c)$ and any of the following three matrices is also a solution of (5)

$$
\left[\begin{array}{ccc}
1 & -2 & 2 \\
2 n & 1-2 n & 2 n \\
2 n & -2 n & 2 n+1
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 2 \\
2 n & 2 n-1 & 2 n \\
2 n & 2 n & 2 n+1
\end{array}\right]\left[\begin{array}{ccc}
-1 & 2 & 2 \\
-2 n & 2 n-1 & 2 n \\
-2 n & 2 n & 2 n+1
\end{array}\right]
$$

(Note that when $n=1$ we obtain Hall's matrices stated above.)
Proof: Equation (5) is a special case of equation (3). By Proposition 2, with $k_{1}=n$,

$$
a^{\prime}=a+d, b^{\prime}=n a+b+\frac{n d}{2}, \text { and } c^{\prime}=b^{\prime}+d
$$

is also solution of (5). Let $n=2 k$, substitute $c-b$ for $d$, and simplify to obtain

$$
\begin{aligned}
a^{\prime} & =a-b+c, \\
b^{\prime} & =2 k a+(1-k) b+k c, \\
c^{\prime} & =2 k a-k b+(k+1) c .
\end{aligned}
$$

In matrix form, this becomes

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 k & 1-k & k \\
2 k & -k & k+1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

To obtain the second matrix, note that, if $(a, b, c)$ is a solution, then so is $(a,-b, c)$. Hence

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 k & 1-k & k \\
2 k & -k & k+1
\end{array}\right]\left[\begin{array}{c}
a \\
-b \\
c
\end{array}\right]
$$

is also a solution. But

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 k & 1-k & k \\
2 k & -k & k+1
\end{array}\right]\left[\begin{array}{c}
a \\
-b \\
c
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 k & 1-k & k \\
2 k & -k & k+1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] .
$$

The third matrix is obtained similarly.
When $n=2 k+1$, we use the Corollary to Proposition 2.
The following example illustrates the use of Proposition 1 and Proposition 3.
Example 2: Suppose we begin with the equation

$$
\begin{equation*}
2 x^{2}+y^{2}=z^{2} . \tag{6}
\end{equation*}
$$

By Proposition 1, (2, 1, 3) is a solution of equation (6). Since $n$ is even, by Proposition 3 the matrices

$$
\left[\begin{array}{rrr}
1 & -1 & 1 \\
2 & 0 & 1 \\
2 & -1 & 2
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 0 & 1 \\
2 & 1 & 2
\end{array}\right] \quad\left[\begin{array}{lll}
-1 & 1 & 1 \\
-2 & 0 & 1 \\
-2 & 1 & 2
\end{array}\right]
$$

and the triple $(2,1,3)$ will generate the solutions $(4,7,9),(6,7,11)$, and $(2,-1,3)$, respectively.
If we begin with the equation

$$
\begin{equation*}
3 x^{2}+y^{2}=z^{2} \tag{7}
\end{equation*}
$$

then, by Proposition 1, (1, 1, 2) is a solution of equation (7). Since $n$ is odd, by Proposition (3) the matrices

$$
\left[\begin{array}{lll}
1 & -2 & 2 \\
6 & -5 & 6 \\
6 & -6 & 7
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 2 & 2 \\
6 & 5 & 6 \\
6 & 6 & 7
\end{array}\right] \quad\left[\begin{array}{lll}
-1 & 2 & 2 \\
-6 & 5 & 6 \\
-6 & 6 & 7
\end{array}\right]
$$

and the triple $(1,1,2)$ will generate the solutions $(3,13,14),(7,23,26)$, and $(5,11,14)$, respectively.

## REFERENCES

1. L. E. Dickson. History of the Theory of Numbers. Vol. II. New York: Chelsea, 1966.
2. P. J. Arpaia. "A Generating Property of Pythagorean Triples." Math. Magazine 44.1 (1971).
3. A. Hall. "Genealogy of Pythagorean Triads." London Mathematical Gazette 59.387 (1970).

AMS Classification Number: 11B39

