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Let p-p(xu x2,...,xn) be a polynomial with positive integer coefficients. In this paper we 
shall discuss some methods for generating solutions for the equation 

P+y2=z2. (l) 

The approach we use is to start with a method for generating solutions for the equaiton 

x2+y2=z2, (2) 

and show how the method is extended to equation (1) or to special cases of (1). 

1. THE RULE OF PYTHAGORAS AND THE RULE OF PLATO 

According to Dickson [1], it was Pythagoras who showed that, if we start with the odd 
integer a, let ft = y (a2 -1) and c = ft +1, then (a, ft, c) is a solution of (2). 

Again, according to Dickson [1], it was Plato who showed that, if we start with the even 
integer a, let b = ^a2 -1 and c = b + 2, then (a, ft, c) is also a solution of (2). 

The methods of Pythagoras and Plato are extended to (1) by the following proposition. 

Proposition 1: Let ax,a2,...,an be positive integers and let a = p(a{,a2,...,an). 

f. Ifaisodd, let b = ±(a-l) and c- b + l, then {aua2, ...,a„,b, c) is a solution of (1). 
ii. If a = 0(mod4), let b = ±a-l and c = ft+ 2, then (aua2,...,an,byc) is a solution of (1). 

III. If a = 2 (mod 4), then it is impossible to find integers b and c such that (ax, a2,..., an, ft, c) is 
a solution of (1). 

Proof: For i and ii, write c2 -ft2 as (c-ft)(e + ft), substitute and simplify. If a = 2 (mod 4), 
then, for integers ft and c, a + b2 = 2 or 3 (mod 4) depending on whether ft is even or odd, respec-
tively, but c2 = 0 or 1 (mod 4) depending on whether c is even or odd, respectively. 

2. THE METHOD OF RECURSION 

Let (a, ft, c) be a solution of (2). Let d-c-b, ax= a + d, bl=a + b + ̂ , and cx = bx +d In 
[2] I showed that (a^ft^q) is also a solution of (2). Let us call this method the "method of 
recursion." The following proposition extends the method of recursion to the equation 

kxx2 +k2xl +'~ + knxl+m+y2 =z2. (3) 

Proposition 2: Let (a1?a2, ..,,a„,ft,c) be a solution of equation (3) and let d = c-b. For/'= 1 
to n define 
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dLk 
a\ = ai+d, b' = T,kiaj+b + L, and cf = bf+d. 

Then (a{, a'2,...,a'n,b\ cr) is also a solution of (3). 

Proof: Substitute af + J for a\ and simplify to obtain 

E£7.(a/)2 = ^ . ( a , + ̂ ) 2 = Sfc-a* + 2dLktat + d2Zkr 

Substitute c2 -b2 -m for E^a 2 , write c2 -b2 as d(c + b), and factor out <ito obtain 

<i(c + b + 2£&/a/ +rfZ£,.) - m. 

Substitute 2b' - 2b for 2£&/a/ +<iZA,. to obtain 

d(c + b + 2yLkiai+dZki)-?n = d(c-b + 2b')-rn. 

And since c-b-c'-b' = d, we obtain 

d(c-b + 2b')-m = {c')2 -{bff -m. 

Note that when dLki is odd we do not obtain integer solutions (see Example 1 below). In this 
case, apply the recursion twice to obtain the following corollary. 

Corollary Let (ax, a2,...,an, b, c) be a solution of equation (3) and let d-c-b. For / = 1 to n 
define 

a; = aj+2d, b' = 21ki(aj +d) + h, and c' = b'+d. 

Then (a{, a^,..., a^, 6', c') is also a solution of (3). 

The following example illustrates the use of Proposition 1, Proposition 2, and its Corollary. 

Example 1: Suppose we begin with the equation 

2x2 +x2+2x2+4 + y2 =z2. (4) 

If we let xl=x3 = l and x2 = 2, then, by Proposition 1, (1, 2, 1, 2, 4) is a solution of (4). Here, 
d = 4-2 = 2. Applying Proposition 2, we have 

a[ = \ af
2=4, a^ = \ 

bf = 2-14-1-2 + 2-1 + 2 + 2 ( 2 + 1 + 2 ) = 1 3 
2 

c' = 15. 
Hence, (3, 4, 3, 13, 15) is also a solution of (4). 

If we let xx = x2 = x3 = 1, then, by Proposition 1, (1, 1, 1, 4, 5) is a solution of (4). Here, 
d = 5 - 4 = 1. Applying Proposition 2, we have 

a/ = 2, a £ = 2 , a ^ = 2 , 
t , 0 , , , „ , A (2 + 1 + 2) 23 
b' = 2-1 + 1-1 + 2-1 + 4 + - —- = — , 

2 2 
2 

Hence, (2 ,2 ,2 , -f-, ^ ) is also a solution of (4). 
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In this case, the solution is not an integer solution. However, if we apply the Corollary to 
Proposition 2, we obtain 

a[ = 3, af
2= 3, a^ = 3, 

A' = 2(2-2 + l-2 + 2-2) + 4 = 24, 
c' = 25. 

Hence, (3, 3, 3, 24, 25) is also a solution of (4). 

3. THE METHOD OF MATRICES 

In [3], Hall showed that, if we mutliply a solution (a,b,c) of (2) by any of the following 
three matrices, the product is also a solution of (2). 

~-l 2 2 
-2 1 2 
-2 2 3 

Let us call this method the "method of matrices." The following proposition extends the method 
of matrices to the equation 

(5) 

1 
2 
2 

-2 2" 
-1 2 
-2 3 

"l 2 2 
2 1 2 
2 2 3 

nx2 + y2 +m~z2. 

Proposition 3: Let (a, b, c) be a solution of equation (5). 
i. Ifn = 2k, the product of (a, b, c) and any of the following three matrices is also a solution of 

(5). 
1 -1 1 

2k l-k k 
2k -k k + l 

1 1 1 
2k k-1 k 
2k k k + l 

-1 1 1 
-2k k-1 k 
-2k k k + l 

ii. If n = 2k +1, the product of {a, b, c) and any of the following three matrices is also a solution 
of(5) 

1 -2 2 
In l-2n In 
In -In In +1 

1 2 2 
In 2n-l 2n 
2n 2n 2n + l 

- 1 2 2 
-2n 2n-\ 2n 
-2n 2n 2n + \ 

(Note that when n= 1 WQ obtain Hall's matrices stated above.) 

Proof: Equation (5) is a special case of equation (3). By Proposition 2, with kx - n, 

nd 
af = a+d, b' = na + b + — , and c' = b'+d, 

2 
is also solution of (5). Let n = 2k, substitute c- b for d, and simplify to obtain 

a' = a-b + c, 
b' = 2ka + (l-k)h + kc, 
c' = 2ka -kb + (k + l)c. 

In matrix form, this becomes 
~ 1 -1 1 ~}\a 
2k l-k k \\b 

\2k -k k + \\\c 
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To obtain the second matrix, note that, if (a, h, c) is a solution, then so is (a, -ft, c). Hence 

is also a solution. But 

1 - 1 1 
2k l-k k 
2k -k k + l 

1 
Ik 
\k 

-1 
l-k 
-k 

1 1 
k 

k + l\ 
r ° \-b 
L c 

a 
-b 
c 

1 
2k 
2k 

-1 
l-k 
-k 

1 1 
k 

k + lj 

[l 
0 

L° 
0 0] 

-1 0 
0 lj 

[a 
lb 
\c 

The third matrix is obtained similarly. 
When n = 2k +1, we use the Corollary to Proposition 2. 

The following example illustrates the use of Proposition 1 and Proposition 3. 

Example 2: Suppose we begin with the equation 

2x2+y2=z\ (6) 

By Proposition 1, (2, 1, 3) is a solution of equation (6). Since n is even, by Proposition 3 the 
matrices 

1 
2 
2 

-1 1 
0 1 

-1 2 

1 1 1 
2 0 1 
2 1 2 

-1 1 1 
- 2 0 1 
- 2 1 2j 

and the triple (2, 1, 3) will generate the solutions (4, 7, 9), (6, 7, 11), and (2, -1, 3), respectively. 
If we begin with the equation 

3x2+y2 =z2, (7) 

then, by Proposition 1, (1, 1, 2) is a solution of equation (7). Since n is odd, by Proposition (3) 
the matrices 

1 
6 
6 

- 2 2 
- 5 6 
- 6 7 

1 2 2 
6 5 6 
6 6 7 

- 1 2 2 
- 6 5 6 
- 6 6 7 

and the triple (1, 1, 2) will generate the solutions (3, 13, 14), (7, 23, 26), and (5, 11, 14), respec-
tively. 
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