ADDENDUM TO

"Second Derivative Sequences of Fibonacci and Lucas Polynomials"
 by

Piero Filipponi and Alwyn F. Horadam

In the above paper [1], the proof of Proposition 9 was inadvertently omitted. It reads as follows:

Proof of Proposition 9: From (1.8) we have

$$
\begin{align*}
C_{n} & =\sum_{i=0}^{n} F_{i}^{(1)} F_{n-i}=\frac{1}{5}\left(\sum_{i=0}^{n} i L_{i} F_{n-i}-\sum_{i=0}^{n} F_{i} F_{n-i}\right) \tag{5.11}\\
& =\frac{1}{5} \sum_{i=0}^{n} i F_{n}+\frac{1}{5} \sum_{i=0}^{n} i(-1)^{i} F_{n-2 i}-\frac{1}{5} \sum_{i=0}^{n} F_{i} F_{n-i}
\end{align*}
$$

From (5.1) and (5.3), (5.11) can be rewritten as

$$
\begin{aligned}
C_{n} & =\frac{1}{10}\left[n(n+1) F_{n}\right]-\frac{1}{25}\left(n L_{n+1}+2 F_{n}\right)-\frac{1}{25}\left(n L_{n}-F_{n}\right) \\
& =\frac{1}{50}\left[5 n(n+1) F_{n}-2 F_{n}-2 n L_{n+2}\right]=\frac{1}{50}\left[\left(5 n^{2}-2\right) F_{n}+5 n F_{n}-2 n L_{n+2}\right] \\
& \left.=\frac{1}{50}\left[\left(5 n^{2}-2\right) F_{n}-n\left(2 L_{n+2}-5 F_{n}\right)\right]=\frac{1}{50}\left[5 n^{2}-2\right) F_{n}-3 n L_{n}\right]=F_{n}^{(2)} / 2
\end{aligned}
$$

Additional comment: With regard to Conjectures 1-7 in [1], some of which were known by us to be true, we wish to record that, in private correspondence with us, both Richard André-Jeannin and David Zeitlin have independently established the validity of these Conjectures.

REFERENCE

1. P. Filipponi \& A. F. Horadam. "Second Derivative Sequences of Fibonacci and Lucas Polynomials." The Fibonacci Quarterly 31.3 (1993):194-204.
