FIBONACCI NUMBERS AND A CHAOTIC PIECEWISE LINEAR FUNCTION

J. S. Frame

Michigan State University, East Lansing, MI 48824 (Submitted August 1992)

INTRODUCTION

The continuous piecewise linear function defined by

$$g(x) = \begin{cases} x + 1/2 & \text{for } x \text{ in } H = [0, 1/2] \\ 2(1-x) & \text{for } x \text{ in } I = [1/2, 1] \end{cases}$$

was displayed by Xun Cheng Huang in [1, p. 97] as an example of a function having periodic points of every finite order *n* under iteration by *g* where $g^n(x) = g(g^{n-1}(x))$, with $g^0(x) = x$. We shall examine the iterates of *g*, and show that there are F_{n+2} subintervals of U = [0, 1] on which g^n is linear, of which F_n lie in *H* and F_{n+1} lie in *I*. Of the F_n intervals in *H*, F_{n-2} are mapped by g^n onto *I* and F_{n-1} onto *U*; of the F_{n+1} in *I*, F_{n-1} are mapped onto *I* and F_n onto *U*; by g^n . Furthermore, the number of points in *U* whose period is a factor of *n* under iteration by *g* is the Lucas number $L_n = F_{n-1} + F_{n+1}$. Finally, we examine the cycles in which rational numbers in *U* with any given odd denominator appear under iteration by *g*.

BUNS AND BINS, BUNKS AND BINKS

We shall call an interval mapped bijectively on U by g^n a "bun" and an interval mapped bijectively on I = [1/2, 1]—but not in a bun—a "bin." "Bunks and "binks" are buns and bins of a fixed width 2^{-k} . Each of the F_{n+1} buns in U and F_{n-1} bins in I contain a periodic point x such that $g^n(x) = x$, so there are L_n points x in U whose period under g is a factor of n.

We denote by $H_{m,k}$ or $I_{m,k}$ a bin or a bun of width 2^{-k} having one endpoint $x = m/2^k$ such that $g^n(x) = 1$. If *m* is odd, the bink $H_{m,k}$ is adjacent to the bunk $I_{m,k}$, preceding it for odd *k*, or following it for even *k*. There are F_n such pairs. There are no bins with even *m*. Of the F_{n-1} buns with even *m* one is $I_{0,k}$ if 2n = 3k + 1, or one is $I_{m,k}$, $m = 2^k$, if 2n = 3k. The remaining buns are adjacent pairs, one twice as wide as the other, such as $I_{12,4}$ and $I_{6,3}$ for n = 5 that have the common endpoint x = 12/16 = 6/8.

When n = 1, the $F_3 = 2$ intervals are $H = H_{1,1} = [0, 1/2]$; and $I = I_{1,1} = [1/2, 1]$. The $F_{n+2} = 3, 5$, and 8 intervals for n = 2, 3, and 4 are

$$I_{01}; I_{32} H_{32} \qquad n = 2, F_4 = 3 \\ I_{12} H_{12}; H_{53} I_{53}, I_{42} \qquad n = 3, F_5 = 5 \\ H_{13} I_{13} I_{22}; I_{43}, I_{11,4} H_{11,4}, H_{73} I_{73} \qquad n = 4, F_6 = 8$$

We separate by a semicolon the buns and bins in H from those in I. To proceed from one n to the next, we first list the intervals in I for n-1 as the intervals in H for n with the same k, but with m replaced by $m-2^{k-1}$ (or x by x-1/2). Then, after a semicolon, we list all the intervals for n-1

in reverse order as intervals in I for n, but with k replaced by k+1 and m by $2^{k+1}-m$, thus replacing x = m/2k by y = 1-x/2, since g replaces y > 1/2 by g(y) = 2(1-y) = x.

We assume as induction hypothesis that, for n = N - 1 there are F_{n-2} bins and F_{n-1} buns in H, and F_{n-1} bins and F_n buns in I, for a total of F_n bins and F_{n+1} buns in U, of which F_n intervals are in H and F_{n+1} in I. We verify this for n = 2 and 3. Then, since $F_{n-1} + F_n = F_{n+1}$, the construction given above shows that the same is true for n = N, proving the hypothesis for all n > 2.

For n = 5 we list the $F_7 = 13$ buns and bins as follows:

 $I_{0,3}, I_{3,4} H_{3,4}, H_{3,3} I_{3,3}; I_{9,4} H_{9,4}, H_{21,5} I_{21,5}, I_{12,4} I_{6,3}, I_{15,4} H_{15,4}$

Next we classify the binks and bunks for fixed n and k, and count them using binomial coefficients $b_{n,k}$ defined by

$$b_{n,k} = \binom{k-1}{n-k} = \binom{k-1}{2k-n-1} = \binom{k}{n-k} - \binom{k-1}{n-k-1} = b_{n+1,k+1} - b_{n-1,k}$$

assuming $0 \le n - k \le k$. The sum over k of $b_{n,k}$ is F_n .

For $2 < n \ge 2k$ the distributions are found to be as follows:

	In H	In I	In U	
Binks (m odd)	$b_{n-2, k-1}$	$b_{n-1, k-1}$	b _{n,k}	<i>n</i> > 1
Bunks (m odd)	$b_{n-2, k-1}$	$b_{n-1, k-1}$	b _{n,k}	<i>n</i> > 1
Bunks (m even)	$b_{n-3, k-1}$	$b_{n-2, k-1}$	$b_{n-1,k}$	n > 2
Bunks (all <i>m</i>)	$b_{n-1,k}$	$b_{n,k}$	$b_{n+1, k+1}$	

Summing over k, we replace $b_{n-i, k-i}$ by F_{n-i} , since

$$\sum_{k} b_{n,k} = \sum_{k} \binom{k-1}{n-k} = F_n.$$

For n > 2 we prove this count by induction, first checking its validity for n = 3 and 4. Bink and bunk counts for g^n in H are those for g^{n-1} in I, with n replaced by n-1. Bink and bunk counts for g^n in I are those for g^{n-1} in U, with n and k replaced by n-1 and k-1, since g doubles widths of intervals in I mapped on U. Thus, the counts are valid for n > 2.

PERIODIC POINTS

A periodic point x such that $g^n(x) = x$ is contained in each of the F_{n+1} intervals $I_{m,k}$ for g^n that map onto U, but only in the F_{n-1} intervals $H_{m,k}$ in I, since g^n maps $H_{m,k}$ intervals in H onto I without overlap. Thus, the number of periodic points in U whose periods divide n is

 $L_n = F_{n-1} + F_{n+1} = \tau^n + (-\tau)^{-n}$, where $\tau = (5^{1/2} + 1) / 2$.

The coordinate x of the periodic point in an $I_{m,k}$ interval is

$$x = (m + (-1)^{k} (x - 1)) / 2^{k} = (m - (-1)^{k}) / (2^{k} - (-1)^{k}).$$

The coordinate x of the periodic point in an $H_{m,k}$ interval is

 $x = 1 - y/2 = (m + (-1)^{k} y)/2^{k} = (m + 2(-1)^{k})/(2^{k} + 2(-1)^{k}).$

168

[MAY

For n = 5 the 11 intervals and periodic points for g are

 $I_{0,3}, I_{3,4} I_{3,3}; I_{9,4} H_{9,4}, H_{21,5} I_{21,5}, I_{12,4} I_{6,3}, I_{15,4} H_{15,4}$

Note that $H_{m,k}$ intervals yield even denominators. The point 22/33 = 2/3 with k = n is a fixed point of g. The others form two period 5 cycles with k = 3 and 4, respectively:

(1/9, 11/18, 7/9, 4/9, 17/18), (2/15, 19/30, 11/15, 8/15, 14/15).

Each of the $\phi(b)$ rational numbers x = a/b in U with b odd and (a, b) = 1 is periodic under iterations of g. For x in I we have $bg(x) = 2b(1-a/b) \equiv -2a \pmod{b}$, whereas for x in H we have g(x) = a/b + 1/2, $bg^2(x) = 2b(1/2 - a/b) \equiv -2a \pmod{b}$. If t is the exponent of -2 (mod b), there are t fractions j/b in the cycle with a/b, such that 0 < j < b. These j form a coset of the subgroup generated by b-2 in the group $\phi(b)$ residues relatively prime to b. If -2 is a quadratic residue of b, then t divides $\phi(b)/2$. If h is the number of the j/b in the cycle with a/bthat lie in H, then the cycle contains h fractions with denominator 2b, and has length n = t + h. The cycle containing 1-a/b has t-h denominators 2b and length 2t-h. There are a total of $\phi(b)/t$ cycles containing the $\phi(b)$ fractions j/b and $\phi(b)/2$ fractions (2j+b)/2b < 1.

To illustrate the theory, we give some examples:

- (a) If b = 23, -2 is a quadratic nonresidue (mod b), to t = 22 and h = 11. Since $23 \times 89 = 2^{11} 1$, 23 divides $2^{t} (-1)^{t}$.
- (b) If $b = 19, -2 = 6^2 \pmod{b}$, so t divides 9. Powers of -2 (mod 19) are congruent to -2, 4, -8, -3, 6, 7, 5, 9, 1, so h = 6 of these nine are between 0 and 19/2. Thus, 1/19 and 18/19 are in cycles of n = 9 + 6 and 9 + 3. Since $513 = 27 \times 19$, b divides $2^9 + 1$.
- (c) If b = 33, the powers of $-2 \pmod{33}$ are -2, 4, -8, 16, 1, so (t, h) = (5, 3) and (5, 2) for cycles with a/b = 1/33 and 32/33. Since $\phi(b) = 20$, there are two other cycles like these.

REFERENCE

1. Xun Cheng Huang. "From Intermediate Value to Chaos." *Math. Magazine* **65.2** (1992):97. AMS Classification Numbers: 11B39

• • • • •

1994]