A BRACKET FUNCTION TRANSFORM AND ITS INVERSE

H. W. Gould

Department of Mathematics, West Virginia University, Morgantown, WV 26506
(Submitted September 1992)
The object of this paper is to present a bracket function transform together with its inverse and some applications. The transform is the analogue of the binomial coefficient transform discussed in [2]. The inverse form will be used to give a short proof of an explicit formula in [1] for $R_{k}(n)$, the number of compositions of n into exactly k relatively prime summands.

Theorem 1-Bracket Function Transform: Define

$$
\begin{gather*}
S(n)=\sum_{k=1}^{n}\left[\frac{n}{k}\right] A_{k}=\sum_{j=1}^{n} \sum_{d \mid j} A_{d}, \tag{1}\\
\mathscr{A}(x)=\sum_{n=1}^{\infty} x^{n} A_{n}, \tag{2}
\end{gather*}
$$

and

$$
\begin{equation*}
\mathscr{S}(x)=\sum_{n=1}^{\infty} x^{n} S_{n} . \tag{3}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathscr{S}(x)=\frac{1}{1-x} \sum_{n=1}^{\infty} A_{n} \frac{x^{n}}{1-x^{n}} . \tag{4}
\end{equation*}
$$

Proof: We need the fact that

$$
\begin{equation*}
\sum_{n=k}^{\infty}\left[\frac{n}{k}\right] x^{n-k}=\frac{1}{(1-x)\left(1-x^{k}\right)}, k \geq 1,|x|<1, \tag{5}
\end{equation*}
$$

which is easily proved and is the bracket function analogue of the binomial series

$$
\begin{equation*}
\sum_{n=k}^{\infty}\binom{n}{k} x^{n-k}=\frac{1}{(1-x)(1-x)^{k}}, k \geq 1,|x|<1 . \tag{6}
\end{equation*}
$$

Relations (5) and (6) were exhibited and applied in [1] for the purpose of establishing some number theoretic congruences.

By means of (5) we may obtain the proof of (4) as follows:

$$
\begin{aligned}
\sum_{n=1}^{\infty} x^{n} \sum_{k=1}^{n}\left[\frac{n}{k}\right] A_{k} & =\sum_{k=1}^{\infty} A_{k} \sum_{n=k}^{\infty}\left[\frac{n}{k}\right] x^{n} \\
& =\sum_{k=1}^{\infty} A_{k} x^{k} \sum_{n=k}^{\infty}\left[\frac{n}{k}\right] x^{n-k}=\sum_{k=1}^{\infty} x^{k} A_{k} \frac{1}{(1-x)\left(1-x^{k}\right)},
\end{aligned}
$$

which completes the proof.
Note that (4) does not turn out as nicely as the corresponding result in [2] because we now have $1-x^{k}$ instead of $(1-x)^{k}$, which is the striking difference between (5) and (6). As a result,
we are not able to express $\mathscr{S}(x)$ as some function multiplied times $\mathscr{A}(x)$ as we did in [2]. Nevertheless, the result does express \mathscr{G} in terms of A instead of S.

Transform (1) may next be inverted by use of the Möbius inversion theorem, but this requires some care. Here is how we do it:

$$
S(n)-S(n-1)=\sum_{k=1}^{n}\left[\frac{n}{k}\right] A_{k}-\sum_{k=1}^{n-1}\left[\frac{n-1}{k}\right] A_{k},
$$

or just

$$
\begin{equation*}
S(n)-S(n-1)=\sum_{k=1}^{n}\left\{\left[\frac{n}{k}\right]-\left[\frac{n-1}{k}\right]\right\} A_{k} . \tag{7}
\end{equation*}
$$

However,

$$
\left[\frac{n}{k}\right]-\left[\frac{n-1}{k}\right]= \begin{cases}1 & \text { if } k \mid n, \\ 0 & \text { if } k \nmid n,\end{cases}
$$

so that we find the relation

$$
\begin{equation*}
S(n)-S(n-1)=\sum_{d \mid n} A_{d}, \tag{8}
\end{equation*}
$$

which may be inverted at once by the standard Möbius theorem to get

$$
\begin{equation*}
A(n)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right)\{S(d)-S(d-1)\} \tag{9}
\end{equation*}
$$

It is easy to see that the steps may be reversed and we may, therefore, enunciate the bracket function inversion pair as

Theorem 2-Bracket Function Inverse Pair:

$$
\begin{equation*}
S(n)=\sum_{k=1}^{n}\left[\frac{n}{k}\right] A_{k}=\sum_{j=1}^{n} \sum_{d \mid j} A_{d} \tag{10}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
A(n)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right)\{S(d)-S(d-1)\} \tag{11}
\end{equation*}
$$

This inversion pair is the dual of the familiar binomial coefficient pair

$$
\begin{equation*}
S(n)=\sum_{k=0}^{n}\binom{n}{k} A_{k} \tag{12}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
A_{n}=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} S(k) . \tag{13}
\end{equation*}
$$

Sometimes it will be convenient to restate the pair (10)-(11) as
Theorem 3:

$$
f(n, k)=\sum_{j=1}^{n}\left[\frac{n}{j}\right] g(j, k)=\sum_{j=1}^{n} \sum_{d \mid j} g(d, k)
$$

if and only if

$$
\begin{equation*}
g(n, k)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right)\{f(d, k)-f(d-1, k)\} \tag{15}
\end{equation*}
$$

We will apply this form of our inversion theorem to give a short proof of a formula in [1]. In that paper the expansion

$$
\begin{equation*}
\binom{n}{k}=\sum_{j=1}^{n}\left[\frac{n}{j}\right] R_{k}(j)=\sum_{j=1}^{n} \sum_{\substack{d \mid j \\ d \geq k}} R_{k}(d) \tag{16}
\end{equation*}
$$

was first proved, where $R_{k}(n)=$ the number of compositions of n into exactly k relatively prime positive summands, i.e., the number of solutions of the Diophantine equation $n=a_{1}+a_{2}+a_{3}+$ $\cdots+a_{k}$ where $1 \leq a_{i} \leq n$ and $\left(a_{1}, a_{2}, a_{3}, \ldots, a_{k}\right)=1$.

Applying (14)-(15) to this, we obtain

$$
R_{k}(n)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right)\left\{\binom{d}{k}-\binom{d-1}{k}\right\}=\sum_{d \mid n} \mu\left(\frac{n}{d}\right)\binom{d-1}{k-1}
$$

which proves the desired formula for $R_{k}(n)$.
The series (11) may be restated in the form

$$
\begin{equation*}
A_{n}=\sum_{k=1}^{n} H_{k}^{n} S(k) \tag{17}
\end{equation*}
$$

but it is awkward to give a succinct expression for the H_{k}^{n} coefficients. To obtain these numbers, however, we may proceed as follows. From (11), we have

$$
\begin{aligned}
A(n) & =\sum_{d \mid n} \mu\left(\frac{n}{d}\right) S(d)-\sum_{d \mid n} \mu\left(\frac{n}{d}\right) S(d-1)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) S(d)-\sum_{(d+1) \mid n} \mu\left(\frac{n}{d+1}\right) S(d) \\
& =\sum_{k=1}^{n}\left\{\left[\frac{n}{d}\right]-\left[\frac{n-1}{k}\right]\right\} \mu\left(\frac{n}{k}\right) S(k)-\sum_{k=1}^{n}\left\{\left[\frac{n}{k+1}\right]-\left[\frac{n-1}{k+1}\right]\right\} \mu\left(\frac{n}{k+1}\right) S(k)-\mu(n) S(0)
\end{aligned}
$$

so that we have the following explicit formula for the H coefficients:

$$
\begin{equation*}
H_{k}^{n}=\left\{\left[\frac{n}{k}\right]-\left[\frac{n-1}{k}\right]\right\} \mu\left(\frac{n}{k}\right)-\left\{\left[\frac{n}{k+1}\right]-\left[\frac{n-1}{k+1}\right]\right\} \mu\left(\frac{n}{k+1}\right) \text { for } 1 \leq k \leq n \tag{18}
\end{equation*}
$$

Ordinarily, $S(0)$ from (1) has the value 0 ; however, it is often convenient to modify (1) and define

$$
\begin{equation*}
S(n)=1+\sum_{k=1}^{n}\left[\frac{n}{k}\right] A_{k} \tag{19}
\end{equation*}
$$

so that $S(0)=1$. With this train of thought in mind, we present a table of H_{k}^{n} for $0 \leq k \leq n, n=$ $0(1) 18$, so that the table may be used for either situation. Thus, the 0 -column in the array will be given by $-\mu(n)$, but with $H_{0}^{0}=1$.

A way to check the rows in the table of values of H_{k}^{n} is by the formula

$$
\begin{equation*}
\sum_{k=1}^{n} H_{k}^{n}=\mu(n) \text { for all } n \geq 1 \tag{20}
\end{equation*}
$$

which, in a sense, gives a new representation of the Möbius function. The proof is very easy. In expression (11) of Theorem 2, just choose $S(n)=1$ for all $n \geq 1$. This makes $A(n)=\mu(n)$ for all $n \geq 0$. But then, by relation (17), we have result (20) immediately.

A Table of the Numbers H_{k}^{n} for $0 \leq k \leq n, n=0(1) 18$

If we adopt the convention that $H_{0}^{n}=-\mu(n)$, but with $H_{0}^{0}=1$, then (20) may be reformulated to say that

$$
\begin{equation*}
\sum_{k=0}^{n} H_{k}^{n}=0, \text { for all } n \geq 1 \tag{21}
\end{equation*}
$$

The author wishes to acknowledge helpful comments by the referee, especially some corrections to the table of values of the H coefficients.

REFERENCES

1. H. W. Gould. "Binomial Coefficients, the Bracket Function, and Compositions with Relatively Prime Summands." The Fibonacci Quarterly 2.4 (1964):241-60.
2. H. W. Gould. "Series Transformations for Finding Recurrences for Sequences." The Fibonacci Quarterly 28.2 (1990):166-71.

AMS Classification Numbers: 11A25, 11B83, 05A19

