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Let a , 0 < a < l , be irrational. For integer n>0, define f(n) - [(n + l)a]-[na]. Define 
g{n)-c if f(n) = 0 and g{n)-d'\f f{n)-\ and let x-x{a) be the infinite string whose nth 

element is g(n). 
Both the string x, and the three functions f(n),g(n), and [na] have been studied extensively. 

Classically, an astronomical problem of Bernoulli led Markov to prove results about the structure 
of x. A concise summary is presented in [12]. The results use continued fraction methods and the 
theory of semigroups. 

Recent research connects x with monoid homomorphisms (e.g., Fraenkel et al. [4]), outputs 
of automata (e.g., Shallit [9]), and general properties of strings (e.g., Mignosi [8]). 

These functions and their related sequences have obvious recreational and experimental 
flavor, are noted for their exotic functional patterns (e.g., Doster [1]), and lend themselves readily 
to computer experiments (e.g., Engel [2], or Hofstadter [7]). 

In this paper we study a problem first described by Hofstadter in an unpublished manuscript 
[6]: 

But now I would like to give an example par excellence of horizontal properties, a property which I 
call "extraction." The idea is this. To begin with, write down x. Now choose some arbitrary term in it, 
called the "starting point." Beginning at the starting point, try to match x term by term. Every time you 
find a match, circle that term. Soon you will come to a term which differs from x. When this happens, 
just skip over it without circling it, and look for the earliest match to the term of x you are seeking. 
Continue this process indefinitely. In the end you have circled a great number of terms after the starting 
point, and left some uncircled. We are interested in the uncircled terms, which are now "extracted" 
from x. The interesting fact is that the extracted sequence is the subsequence of x which begins two 
terms earlier than the starting point! To decrease confusion, I now show an example, where instead of 
circling I underline the terms which match x. In this example, a = (V5 -1) / 2. 

I have chosen this "d" as the starting point: 
I 
I 

dcd dcdcddcddcdcddcdcddcddcdcddcddcdcddcdcdd 

The underlined sequence matches the full sequence, x, term by term. Now what is the extracted 
sequence? It is: 

cddcdcddcddcdcddcd---

And you will find that this matches with the sequence which begins two places earlier than the 
starting point. Carrying it further is tedious, and does nothing but confirm our observation. Why does 
this extraction-property hold? At this point, I must admit that I don't know. It is a curious property 
which needs further investigation. 

Written while Hendel was at Dowling College, which partially supported this project. 
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To rigorously formulate this, we present the following definition. 

Definition 1: Suppose U = ux...un, V = vh..vm, mdE = el...ep with uhVj,ek e{c,d}, n,m>0, 
and n-m + p. We say U aligns (with) V with extraction E (notationally indicated by U ID V; E), 
if there exist integers 7(0), j(l)9 7(2), ..., 7'(p), such that 

^ = {vi...vt/(1)}e1{v>/(1)+1...vi/(2)}e2...^{vi/(p)+i...vw} (with {va...vb} empty if b<a), 
where 

(i) 0 = XO) < 7(1) < 7(2) < • • • < j(p) < m, 

(ii) et*vKi)+l9 for !<?</? . 

For example, if p = 0, U' ZDV\E with U -V and £ the empty string. Throughout this paper we 
use the nonstandard symbol (f> to denote the empty string. It is easy to see that UZDV;$ if and 
onh/ifU = V. 

If U D F ; E, then U, V, and E are call the original, aligned, and extracted strings, respec-
tively, and the relationship itself is called an alignment. 

Remark: Define strings U = dcdcdmd V = dd. To clarify some subtleties in Definition 1, we 
explore the consequences of dropping requirements (i) or (ii). 

If we drop the requirement of strict inequality, j(p) <rn, in Definition l(i), then we allow 
Uz>V; ccd withy(l) = 1,7(2) = j@) = m = 2. 

If we keep requirement (i) but drop requirement (ii), then we allow U ZDV; cdc, with 7(1) = 
7(2) = 7(3) = 1, m = 2, e2 = y ^ + i and, similarly, we allow U => V; dec, with 7(1) = 7(2) = 0, 
7(3) = 1, m = 3,el = vj(l)+l. 

Thus, for given original and aligned strings, without requirements (i) and (ii), the extracted 
string is not necessarily unique. However, with requirements (i) and (ii), we can prove the follow-
ing lemma. 

Lemma 1: For given strings U and V, there is at most one string E such that U uV;E. 

Proof: We suppose U IDV;E, UZDV;E'9 a n d E ^ E ' and derive a contradiction. 

By Definition 1, there are sequences jQ),...9j(p)9 and7'(l),..., j'{p) satisfying (i) and (ii) of 
Definition 1 and 

U = {vi...v</(1)}g1{v</(1)+1...vy(2)}e2...^{v</(/,)+1...vm}, (*) 

U = {vi--yr{i)}e{{vm+h.yn2)}e^ (**) 

Observe that, for l<r<p, er = the {j(r) + r}^ element of U. Similarly, if t is given such that 
either j(r) + r <t < j(r +1) + (r +1) for some r, 0 < r <p-1, or j(r) + r <t <m with r = p, then 
vt_r = the tth element of U. 

Let s be the largest integer such that j(r) = j'(f) for 0 < r < s. Then s exists and is positive 
because 7(0) = 0 = 7'(0). Since we assume E^E', $< p. 

If we further suppose that j(s) < jf($), then j'(s -1) + (s -1) < j(s) + s< j'{s) + s. 

1994] 99 



HOFSTADTER'S EXTRACTION CONJECTURE 

Therefore, by considering (*) and (**), respectively, the {/(s) + s}st element of t / Is, simul-
taneously, es and v,(5)+1, contradicting Definition 1 (II). A similar argument holds if j'(s) <j(s). 
These contradictions show that E = E' and complete the proof 

Recall that u is & prefix (that is, left factor) of v if there is a stringy such that v = uy. Simi-
larly, u is a suffix (or right factor) of v, if v = j / / / for some string j . We say that the stringy is the 
limit of the sequence of strings yiri), n = 1, 2, 3, ..., notationally indicated by y - lim y(n), if, for 
each positive integer m less than or equal to the length ofy, the left factors of length m of y{ri) and 
y are equal for all sufficiently large n. 

Definition 2: Suppose U, V, and E are (possibly infinite) strings. Suppose U(n),V(ri), and 
E(n), n>\, are sequences of finite strings such that U(n)z)V(n);E(n), with limU(n) = U, 
lim V(ri) = F, and lim E(n) = £ . Then we say J7 aligns V with extraction E and indicate this, 
notationally, by U ZD V; E (we do not require E to be infinite). 

Remark: By a proof similar to that of Lemma 1, it can be proved in the infinite case also that E is 
(uniquely) functionally dependent on U and V. 

Let xm denote x with the left factor of length m deleted. We can now formulate the general 
Hofstadter conjecture as follows: 

Hofstadter's Conjecture: For any a and any m > 2 

xm ZDX; xm_2. (1) 

Example 1: For the remainder of this paper we assume a = (V5 - l ) / 2 . In this case, the 
sequence 

x = dcd dcd cd dcd dc dcd dcd cd dcd dcd cd dcd dcd cd dcd cd dcd dcd cd dcd • • • 

has been described fairly thoroughly in the literature (see Tognetti et al. [11]). The sequence is 
referred to as the Golden sequence or, sometimes, the Fibonacci sequence. With 

xx - cd dcd cddcd dcdcddcd cddcddcdcddcd • • • 
x3 = dcd cddcd dcdcddcd cddcddcdcddcd • • •, 

Hofstadter's conjecture for m = 3 asserts x3 z> x; Xj. 
We define c0 = c, cx = d, 

cn=cn_2cn_u n>2. (2) 

Then c2 = cd, c3 = dcd, c4 = cddcd, c5 = dcd cddcd, and c6 = cddcd dcd cddcd. 
The following result is well known [12]. 

Lemma 2: x - q c 2 . . . . 

A crucial component of the proof of Hofstadter's conjecture is a concatenation lemma assert-
ing that under approprite conditions the extractions of concatenated strings are the concatenations 
of their extractions. 
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Lemma 3: 
(i) Let U, V, E and U\V',Ef denote arbitrary strings of finite length. If UZDV\E and 

U' z> V'\E\ then UU' ID W'\ EE\ 
(ii) If UhVh andEh l<i <m, are arbitrary strings of finite lengths with m some integer, and if 

Uj ZDVj'yEj, 1 < /' < rn, then YlUjID YIVJ; IIEt (with products denoting concatenation). 
Proof: Part (ii) follows from part (i) by simple induction. To prove (i), we suppose, using 

Definition 1, that 
U = {V!... v/(1) }ex {v/(1)+1... v/(2) }e2... ep {vy (p)+l...vm}, 

^' = R. .v; , ( 1 ) K^ 

for some sequences of integers, 0<j(l)<--<j(p)<m, 0<j'(l)<--'<jf(pf)<m' with V = vv.. 
vm, V' = vl...v'm„ E = el...ep9mdE' = e[...e'pl. Then 

To prove £/£/' ZDW\ EE', we verify that requirements (i) and (ii) of Definition 1 are satisfied by 
the sequence of integers 0<j(l)<j(2)<~'<j(p)<m + j'(l)< rn + j'(2)<---< m + j'(p')< 
m + m'. 

The applicability of Lemma 3 will be enhanced by developing a notation for products of cn. 
Formally, for integers k,p>0, q>l, with q dividing (p-k), recursively define Pk,P;q-
Pk,P-q;qcp if P > &, ancl Pk,k;q~ck- If P < k, then Pjc,p;q = 0- If 9 = 1, then by abuse of 
notation we will drop q and let PktP - Pk,p-,\- Similarly, we let Pk - l i m ^ ^ Pt,p-\- Using this 
notation, Lemma 2 reads x = Px. 

Lemma 4: Pa+2t b =) Pa+h b_x\ PQt b_2, for a > 0, b > a + 2, 
Pa+2,b => Pa,b-l\ Pa+l,b-2, & * a > 0, b > G + 2 , 

ftfpii,^, for6>a>0. 
Proof: First, observe that c2 z) q; c0 and c3 ID c2; q. If, by an induction assumption, cn_2 3 

c„_3; c„_4 and cn_{ 3 c„_2; c„_3, for some n>4, then, by Lemma 3 and (2), cw z> c„_x; c„_2. Conse-
quently, applying concatenation (that is, Lemma 3) to the b + \-(a + 2) alignments, ca+2+J 3 
ca+i+i;ca+i, 0<i<b-(a + 2),yidd$Pa+xbiiPa+lb_l;Pa,b_2. 

To prove the second assertion in Lemma 4, note that ca+2 ID caca+l; <f>, by (2). We then apply 
concatenation to this alignment and the alignments ca+2+i ZDca+l+i; ca+i, \<i <b-(a + 2). Note 
that, if b = a + 2, then Pa+ib-2 = ̂  and both the statement and the proof are still valid. 

The last assertion in Lemma 4 is obvious. 

Corollary: Pa+2 3 Pa+l, Pa, Pa+2 z> Pa, Pa+l, Pa^PaJ. 
Proof: Let b go to infinity in Lemma 4. 

Examples: Using Lemmas 3 and 4 and the Corollary, we can explore Hofstadter's conjecture, 
(1), form = 2,3,4. 

m = 2: By applying concatenation to <i IDJ; <j> and P3ZDP2; PU we infer x2 ID X; X. 
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m = 3: The assertion P3 ID / } ; P2 is equivalent to x3 DX;XJ. 

m = 4; Note that x4 = aif^, x = d^, and x3 = i^. Therefore, applying concatenation to the 
alignments cdz)d;c and P4 ZDP2;P3 implies that x4 IDX;CX3. Consequently, by Lemma 1,(1) 
cannot hold for m = 4, since x2 begins with a rf. Similar reasoning shows that (1) is false for 
m = 9,12,... . 

To generalize the m = 4 case precisely, recall Zeckendorf s result that every integer m can be 
represented uniquely as a sum of nonconsecutive Fibonacci numbers, m — X/>2 ̂ (0-̂ J > with £(/) in 
{0,1}, £•(/) = 0 if £•(?' f 1) = 1, and s(n) = 1 with e(i) = 0 for i > n +1, for some integer « > 2. The 
ascending set of £•(?) is the Fibonacci representation ofm [9]. We define an injective map from 
nonnegative integers to finite binary strings, m* - s, such that s has length n - \ and the ith com-
ponent of s equals s{i +1) for 1 < / < n - 1 . 

We will use standard conventions about exponents and string concatenations. For example, 
54* - (01)4. In the sequel, in the proofs of Lemma 5 and Theorem 1, certain closed formulas will 
be given for (/w + 1)* and (m-2)*. The relationships between m* and (m±j)* can be "translated" 
easily into well-known identities. For example, the assertion that, if m - (10)^ 1 for some k>0, 
then (m +1)* = (00)* 01 is seen to correspond to the identity F2 + F4 + • • • + F2Jc+2 = F2k+3 - 1 . 

Therefore, in the proofs of Lemma 5 and Theorem 1, these closed formulas will simply be 
stated without further elaboration. 

Some of the relationships between m and the m^ character of x are explored in [3]. The 
examples for which (1) fails, m = 4, 9,12,17,22,25, 30, 33,..., have Fibonacci representations 
beginning with a one followed by an odd number of zeros. This suggests the following modified 
Hofstadter 's conjecture: 

For all m > 2, if m - 102A:+1 Is, for some integer k > 0 and some binary string s, then 

xmZDx; cxm_v (3) 

Otherwise, (1) holds. 

Remark: By the examples presented after Lemma 4 and its corollary, the modified Hofstadter 
conjecture is true for m = 2, 3, 4. 

We now state all identities needed in the proofs of Lemma 5 and Theorem 1: 

clP2,2k;2=c2k+l> fcr&>l, ( 4 ) 

C2^3,2k-l; 2 ~ C2k > ^0T & - ^ 

P3, 2*+l; 2 - P\, 2k , for A > 1 

(5) 

(6) 

(7) 

(8) 

Pl,2k;2 ~ c Pl,2k-U for £ > 1. 
c l A , 2k; 2 = P\, 2k-l > for & > 1 

Pa+l, b-*M = Ca+lPa+2, b = Pa+l b if a + 1 < b - 1. (9) 

For / > 2, and integers K(i), with K(i +1) > K(i) + 2, j<i<t-\, withy in {0, 1}, 
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PfCU>+LKU+l)-2 ' • ' PK{t-l)+\,K(t)-2CK{t)+\ = PKU)+1,K(J+1)VK(J+1)+2,K(J+2) • • • ^T(f-l)+2,£(/)}> (10) 

the expression in braces being empty if t < j + 2. 

To prove (4), note that, if k - 1, then c ^ = c3 while, if k > 1, then, by (2) and an induction 
assumption, c2^+1 =c2^_1c2/: = ̂ 1̂ 2,2yt-2; 2C2̂  -cilD2,2*;2- The proofs of (5)-(7) also follow from 
(2) and an induction assumption. Equation (8) follows from (7) by cancelling the leftmost c on 
both sides of the equation. 

To prove (9) note that, if a + 1 < A-2, then, by (2), Pa+lb„2cb+i = Pa+\,b = Ca+iFa+2,b while, if 
a + l = b-l, then Pa+\,b-2- $> s o ^at (9) becomes cb+l = cb_xPb^b = Pb_^by which follows from 
(2). Note, however, that, if a + l >b, (9) is false. Equation (10) follows from (9) by a straight-
forward induction. 

Definition 3: Given an integer m, a strictly increasing function/on the positive integers is said to 
be a representation of xm \£xm = c^^c^2)cf(3) 

To each integer m>\ with Fibonacci representation, s(i), i > 2, with s(n) = 1, s(i) - 0 for 
i>n + \ we associate a triple (n,j,z), where n-j is the total number of ones in the Fibo-
nacci representation s of m, and z is a strictly increasing sequence, z(l),z(2),...,z(j) with 
s(z(i) +1) = 0, \<i < j . As an example, if m = 54, then n = 9, j - 4, andz(i) - 2 / -1 for / = 1, 2, 
3,4. We now describe a canonical representation of xm. 

Lemma 5: Given an integer m>2 and its associated triple, (n,j,z), the function/, defined by 
/ ( / ) = z(i), \<i <7, f(j + l + t) = n + t, t - 0,1,2, 3..., is a representation of xm. 

Proof: To start an induction argument, we treat the case m-2. If m - 2, then m = 01, 
« = 3, J = 1, andz(l) = 1. Clearly, xm = qi^ as required. The induction step has three cases. 

Case 1—m* = 00s with s a binary string: Clearly (m + l)* = 10s. By induction, we may 
assume that a representation/of xm exists such that / ( / ) - 1 , / = 1,2. Thus, xm - cxc2y for some 
infinite string y and, consequently, xm+l = c2y as required. 

Case 2—m* = (01)*00s with k>\ and 5 a (possibly empty) binary string: Then (m + l)* 
= (00)* 10s. By induction, we may assume that there is a representation / of xm such that, 
whether s is empty or not, _/"(/) = 2/ — 1, l<i<k, and f(k+i) = 2k + i, i = 1,2. Thus, xw = 

î,2£+r,2>'fbr some infinite stringy and, therefore, by (6), xm+l = Pxik+v^y ~ ^1,2^ a s required. 

Case 3— ##f* = (10)*0s with A > 1 and s a binary string: Then (m + l)* = (00)*_i010s. By 
induction, we may assume there is a representation / of xm with / ( / ) = 2/, 1 < / < A:, /(& +1) = 
2£ + l. Thus, xw = i^^yt-^J f°r some infinite stringy and, consequently, by (8), xm+l = ^ A ^ ^ 
= Pi2k-\y a s squired. 

Clearly, for each m>2, one of these three cases must hold and, consequently, the proof is 
complete. 

Theorem 1: The modified Hofstadter's conjecture is true for all m > 2. 
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Proof: The theorem has already been verified for rn = 2, 3, 4. If m> 5, then there exist 
integers * > 1, £(1), &(2), ...&(/), k(i) > 1, such that either 

wf* = 10*(1)1...0*(r)l (11) 
or 

/w* = 0*(1)10*(2)1...0fc(r)l. (12) 

To prove the theorem, we need the Fibonacci representations for (m-l)* and (m - 2)*. 
There are now four cases—1A, IB, 1C, and ID—depending on whether m begins with a 1 or 
not and depending on whether k(X) is even or odd. 

Case 1A—(11) holds, with k(l) odd: Then, clearly, (m-l)* = 0*(1)+11{0*+2) 1... 0k(t) 1}, the 
expression in braces being empty if t = 1. 

Define integers 

K(0) = 09 K(i + l) = K(i) + l + k(i + l), / = 0, l , . . . , r - l . (13) 
Clearly, 

By Lemma 5, 

and 

K(i + l) > £(z') + 2, / = 0,1,..., t-1. (14) 

Xm ~ PK(0)+2,K(1) ••• ̂ K(t-l)+2,K(t)^K(t)+2 0-V 

Xm-l ~ P\,K(\)YK(l)+2,K(2) ••• ̂ K(t-l)+2,K(t)j ^K(t)+2- U ^ ) 

The expression in braces is empty if t = 1. 
Using Lemma 4 and its corollary, we apply concatenation to the alignments 

^2,K(\) D ° U ( l ) - l i M),r(l)-2> 

*K{i)+2,K{i+Y) ^ *K(i\K(i+\)-\> *K(i)+l,K(i+l)-2, * - l - * ~ *> 

*K(t)+2 ^ A : ( 0 ' ^ ( 0 + 1 ' 
and 

to obtain 

with 
*w=>*;.y (17) 

J ~ CPK(0)+1,K(\)-2 •••^(r-l)+U(f)-2^(f)+l- 0*0 

Since k(l) is odd, we must prove (3). By (17), to prove (3), it suffices to prove y-cxm_v 

Therefore, by (16) and (18), it suffices to prove 

^(0)+l,AT(l)-2 ••• ̂ K(t-l)+l,K(t)-2CK(t)+l = ^K(0)+l,K(l) yK(l)+2,K(2) ••• ^K(t-l)+29K(t)j> 

which follows from (14) and (10). 

Case IB—(11) holds with 
k(l) = 2k, k>l: (19) 

For notational reasons, it will be clearer in cases IB, 1C, and ID to first assume that t > 2. The 
t = 1 case can then be treated separately. If t > 2, then (m - 2)* = (10)* 10 0k(2) 1... 0*(0 1. Define 
K(i) as in (13). Then (14) and (15) still hold. By Lemma 5, we have 
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xm-2 ~ P2,2k;2c2k+2PK(l)+2,K(2) ••• ^(/-l)+2,K{t)PK{t)+2- (2°) 

Proceeding as in case 1A, we apply Lemmas 3 and 4. Equations (17) and (18) still hold. 
Since k(l) is even, we must prove (1) instead of (3). By (17), to prove (1) it suffices to 

prove y = xm_2. Therefore, by (18) and (20), it suffices to prove 

C^K(0)+l,K(l)-2 ••• ̂ K(t-l)+l,K(t)-2CK(t)+l = ^2,2/:;2<:2yt4-2^(l)+2,r(2) ••• ̂ K(t-l)-h2,K(t)- ( 2 1 ) 

By (19) and (13), K(0) +1 = 1 andK( l ) -2 = {k(l) + 1 } - 2 = 2k-1. Hence, by (7), proving (21) 
is equivalent to proving 

A,2fc;2^:(l)+l, i :(2)-2 ••• ̂ ( r - l ) + l , ^ ( / ) - 2 C ^ ( 0 + l = ^2,2k;2CK(l)+l^K(l)+2,K(2) ••• PlC(t-l)+2,lC(t)> 

which follows from (14) and (10). 

To complete the proof of case IB, we treat the t = 1 case: If t = 1, then m*, (m-2)*, xm, 
and xm_2 are 102*1, (10)^1, P2,2k+iP2k+3> an^^2,2^;2^+2> respectively. Using Lemma 4, we 
apply concatenation to the alignments P2i2k+i 3 ^1,2^ cP\,2k-i a n d ^2k+3 ^ Pik+i* ^2k+2 t o obtain 
(17) with y - cPh2k-\P2k+2 To prove (1), it suffices to prove xm_2. = y, which follows from (7). 

Case 1C—(12) holds with (19): For t > 2, we have (m-2)* = lO(Ol)^"100*(2) 1... 0*(f) 1. 
Define 

K(0) = 0, KQ) = /c(l), K(i +1) = X(i) +1 + *(i +1), 1 < i < t -1. (22) 

Note that, by (19), (14) still holds. By Lemma 5, 

Xm ~ P\,K(\)PK{\)+2,K(2) ••• ^K(t-l)+2,K(t)PK(t)+2 ( ^ 
and 

Xm-2 - c2P3,2k~l;2c2k+\PK(l)+2,K(2) ••• ̂ ( f - l ) + 2 , £ ( 0 ^ ( 0 + 2 - (^^) 

Using Lemma 4 and its corollary, we apply concatenation to the alignments 

M,AT(1) ^ M ^ C l ) ' r> 

^T(l)+2,/:(2) 3 ^r(l)+l,AT(2)-lJ ^ T ( 1 ) , A : ( 2 ) - 2 J 

^( / )+2, / : ( /+!) ^ PK(j),K(i+\)-\i ^AT(/)+l, AT(/+l)-2 > 2 < 7 < £ — 1, 
and 

to obtain (17) with 

^T(r)+2 ^ -*AT(0> ^ ( 0 + 1 ' 

J7 - PK(1),K{2)-2\PK{2)+1,K{3)-2 ••• PK(t-l)+l,K(t)-2jPK(t)+h (^-V 

the expression in braces being empty if t = 2. 
By (17), to prove (1) it suffices to prove y = xm_2. Therefore, by (25) and (24), it suffices to 

prove 

^( l ) ,^(2)-2{^(2)+l ,* : (3)-2 ••• PK(t-l)+l,K(t)-2j CK(t)+l ~ C2^3,2£-l;2C2M^T(l)+2, K(2) ••• ̂ AT(f-l)+2, K(t)• C^^J 

By (19) and (22), K(l) = 2k so that, by (5), proof of (26) is reduced to proof of 

PK(1)+1,K(2)-2 '•• ^K(t-l)+l,K(t)-2CK(t)+l ~ PK{\)+\,K{2) (^(2)+2,K{2) ••• ^K(t-l)+2,K(t)]> 

which follows from (10) and (14). 
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It remains to treat the case t-\. If k = 1 also, then case 1C reduces to (1) with m = 3, 
which has already been treated. If &>1, then m*,(m-2)*,xm, andxw_2 are 02k 1,10(01)^-1, 
p\,ikp2k^ a n d c2px2k-\;2pik^ respectively. By concatenating the alignments, Ph2k uPh2k;<f> 
and P2k+2 ^ P2k+\> P2k> w e derive (17) with y - P2k = c2kP2k+v To prove (1), we must prove that 
y ~ xm-2 > which follows from (5). 

Case ID—(12) holds with 
ft(l) = 2ft + l , k>0: (27) 

For r > 2, we have (»#-2)* = 0(01)* 00*(2) 1... 0*(r) 1. Define K(i) by (22). Then (14) and (23) 
still hold. By Lemma 5, 

Xm-2 ~ ClP2,2k;2C2k+2PK(l)+2,K(2) ••• PK(t-l)+2,K(t)PK(t)+2- (28) 

Proceeding as in case 1C, we have (17) with (25). By (17), to prove (1) it suffices to show that 
y ~ xm-2 • Therefore, by (25) and (28), it suffices to show 

C\P2,2k; 2C2k+2PK(l)+2, K{2) • • • PK(t-l)+2> ^ ( 0 ~ CK(l)PK(l)+l, K{2)-2 • • • PK(t-1)+1, K(t)-2CK(t)+\- (29) 

By (27) and (22), K(l) = 2k +1; therefore, by (4), proof of (29) reduces to proof of 

CK(l)CK(l)+ lPK(l)+2, K(2) •'• PK(t-l)+2, K(t) ~ CK(l)PK(l)+l, K(2)-2 \PK(2)+l, K(3)-2 • • • PK(t-l)+l, K(t)-2 J CK(t)+l> 

which follows from (10) and (14). 
The t-\ case is treated in a manner similar to the t-\ case in IB and 1C. This completes 

the proof of Theorem 1. 

The proof and formulation of a modified Hofstadter's conjecture for other irrationals remains 
an open and difficult problem. To generalize (3), it seems reasonable to conjecture that, for every 
irrational, there exists a finite set of strings and a finite set of integers such that, for every m, 
xm ZD x; Qxm_n with Q and n belonging to these finite sets. The authors announced a proof of 
the deceptively simple case a - - 1 with m equal to sums of Pell numbers [5]. This proof 
required considerable alteration of Definition 1 and Lemma 3, as well as a more developed form 
of Lemma 4. 
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