INTEGRATION AND DERIVATIVE SEQUENCES FOR PELL AND PELL-LUCAS POLYNOMIALS

A. F. Horadam

University of New England, Armidale, Australia 2351

B. Swita

Universitas Bengkulu, Bengkulu, Sumatra, Indonesia

P. Filipponi

Fondazione Ugo Bordoni, Rome, Italy I-00142
(Submitted June 1992)

1. INTRODUCTION

Previously in [1] and [2], in which integration and first derivative sequences for Fibonacci and Lucas polynomials were introduced, it was suggested that these investigations could be extended to Pell and Pell-Lucas polynomials. Here, we explore some of their basic features in outline to obtain the flavor of their substance. Further details may be found in [5], with some variation in notation.

Pell polynomials $P_{n}(x)$ are defined by the recurrence relation

$$
\begin{equation*}
P_{n}(x)=2 x P_{n-1}(x)+P_{n-2}(x), \quad P_{0}(x)=0, P_{1}(x)=1, \tag{1.1}
\end{equation*}
$$

while the associated Pell-Lucas polynomials $Q_{n}(x)$ are defined by

$$
\begin{equation*}
Q_{n}(x)=2 x Q_{n-1}(x)+Q_{n-2}(x), \quad Q_{0}(x)=2, Q_{1}(x)=2 x . \tag{1.2}
\end{equation*}
$$

Standard procedures readily lead to the Binet forms

$$
\begin{equation*}
P_{n}(x)=\frac{\alpha^{n}(x)-\beta^{n}(x)}{2 \Delta(x)} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{n}(x)=\alpha^{n}(x)+\beta^{n}(x), \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta(x)=\sqrt{x^{2}+1}, \alpha(x)=x+\Delta(x), \beta(x)=x-\Delta(x) \tag{1.5}
\end{equation*}
$$

Properties of $P_{n}(x)$ and $Q_{n}(x)$ are given in [3] and [5].
Substitution of $x=1$ in (1.1) and (1.2) leads to the corresponding Pell numbers $P_{n}=P_{n}(1)$ and Pell-Lucas numbers $Q_{n}=Q_{n}(1)$. For reference, we tabulate some values of P_{n} and Q_{n} :

n	0	1	2	3	4	5	6	7	8	\cdots
P_{n}	0	1	2	5	12	29	70	169	408	\cdots
Q_{n}	2	2	6	14	34	82	198	478	1154	\cdots

All the Q_{n} are even numbers, as is manifest from (1.2). The P_{n} are alternately odd and even.

2. PROPERTIES OF DERIVATIVE SEQUENCES

Using known [3] summation formulas for $P_{n}(x)$ and $Q_{n}(x)$, we derive the first derivative Pell sequence $\left\{P_{n}^{\prime}(x)\right\}$ given by

$$
\begin{equation*}
P_{n}^{\prime}(x)=2 \sum_{m=0}^{\left[\frac{n-1}{2}\right]}(n-2 m-1)\binom{n-m-1}{m}(2 x)^{n-2 m-2} \quad(n \geq 1) \tag{2.1}
\end{equation*}
$$

and the first derivative Pell-Lucas sequence $\left\{Q_{n}^{\prime}(x)\right\}$ for which

$$
\begin{equation*}
Q_{n}^{\prime}(x)=2 n \sum_{m=0}^{\left[\frac{n}{2}\right]}\binom{n-m-1}{m}(2 x)^{n-2 m-1} \quad(n \geq 1) \tag{2.2}
\end{equation*}
$$

where the dash denotes differentiation with respect to x and the symbol [•] represents the greatest integer function.

From (1.1) and (1.2), we must have

$$
\begin{equation*}
P_{0}^{\prime}(x)=0 \text { and } Q_{0}^{\prime}(x)=0 . \tag{2.3}
\end{equation*}
$$

Expressions (2.1) and (2.2) yield the first few polynomials $P_{n}^{\prime}(x)$ and $Q_{n}^{\prime}(x)$ [5]:

$$
\begin{array}{ll}
P_{1}^{\prime}(x)=0 & Q_{1}^{\prime}(x)=2 \\
P_{2}^{\prime}(x)=2 & Q_{2}^{\prime}(x)=8 x \\
P_{3}^{\prime}(x)=8 x & Q_{3}^{\prime}(x)=24 x^{2}+6 \\
P_{4}^{\prime}(x)=24 x^{2}+4 & Q_{4}^{\prime}(x)=64 x^{3}+32 x \\
P_{5}^{\prime}(x)=64 x^{3}+24 x & Q_{5}^{\prime}(x)=160 x^{4}+120 x^{2}+10 \\
P_{6}^{\prime}(x)=160 x^{4}+96 x^{2}+6 & Q_{6}^{\prime}(x)=384 x^{5}+384 x^{3}+72 x \\
P_{7}^{\prime}(x)=384 x^{5}+320 x^{3}+48 x & Q_{7}^{\prime}(x)=896 x^{6}+1120 x^{4}+336 x^{2}+14 \\
P_{8}^{\prime}(x)=896 x^{6}+960 x^{4}+240 x^{2}+8 & Q_{8}^{\prime}(x)=2048 x^{7}+3072 x^{5}+1280 x^{3}+128 x .
\end{array}
$$

Putting $x=1$ in (2.4), we derive the corresponding first derivative Pell sequence numbers $\left\{P_{n}^{\prime}\right\}=\left\{P_{n}^{\prime}(1)\right\}$ and first derivative Pell-Lucas sequence numbers $\left\{Q_{n}^{\prime}\right\}=\left\{Q_{n}^{\prime}(1)\right\}$, tabulated thus [5]:

n	0	1	2	3	4	5	6	7	8	\cdots
P_{n}^{\prime}	0	0	2	8	28	88	262	752	2104	\cdots
Q_{n}^{\prime}	0	2	8	30	96	290	840	2366	6528	\cdots

All the numbers P_{n}^{\prime} and Q_{n}^{\prime} are even, by virtue of the factor 2 in (2.1) and (2.2).
Elementary calculations using (1.5) produce

$$
\begin{align*}
& \alpha^{\prime}(x)=\frac{\alpha(x)}{\Delta(x)}, \tag{2.6}\\
& \beta^{\prime}(x)=-\frac{\beta(x)}{\Delta(x)} \tag{2.7}
\end{align*}
$$

$$
\begin{align*}
& \left\{\alpha^{n}(x)\right\}^{\prime}=\frac{n \alpha^{n}(x)}{\Delta(x)}, \tag{2.8}\\
& \left\{\beta^{n}(x)\right\}^{\prime}=-\frac{n \beta^{n}(x)}{\Delta(x)}, \tag{2.9}
\end{align*}
$$

whence we derive, after a little calculation using (1.3) and (1.4),

$$
\begin{equation*}
P_{n}^{\prime}(x)=\frac{n Q_{n}(x)-2 x P_{n}(x)}{2 \Delta^{2}(x)} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{n}^{\prime}(x)=2 n P_{n}(x) \tag{2.11}
\end{equation*}
$$

Taken in conjunction with (1.3) and (1.4), equations (2.10) and (2.11) allow us to express $P_{n}^{\prime}(x)$ and $Q_{n}^{\prime}(x)$ in their Binet forms.

Substituting $x=1$ in (2.10) and (2.11), we have immediately

$$
\begin{equation*}
P_{n}^{\prime}=\frac{n Q_{n}-2 P_{n}}{4} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{n}^{\prime}=2 n P_{n} . \tag{2.13}
\end{equation*}
$$

For example, $P_{6}^{\prime}=262=\frac{6 \cdot 198-2 \cdot 70}{4}=\frac{69_{6}-2 P_{6}}{4}$ by (2.12) and (1.6).
Other basic results are [5]:

$$
\begin{align*}
& \left.\begin{array}{l}
P_{n}^{\prime}=2 P_{n-1}^{\prime}+P_{n-2}^{\prime}+2 P_{n-1} \\
Q_{n}^{\prime}=2 Q_{n-1}^{\prime}+Q_{n-2}^{\prime}+2 Q_{n-1}
\end{array}\right\} \text { recurrence relations }, \tag{2.14}\\
& P_{n+1}^{\prime}+P_{n-1}^{\prime}=Q_{n}^{\prime}, \tag{2.16}\\
& Q_{n+1}^{\prime}+Q_{n-1}^{\prime}=2 n Q_{n}+4 P_{n}, \tag{2.17}\\
& \left.P_{n+1}^{\prime} P_{n-1}^{\prime}-\left(P_{n}^{\prime}\right)^{2}=\frac{8 n^{2}(-1)^{n+1}+4(-1)^{n}-Q_{n}^{2}}{16} \text { (Simson's formula }\right), \tag{2.18}
\end{align*}
$$

and

$$
\begin{equation*}
Q_{n+1}^{\prime} Q_{n-1}^{\prime}-\left(Q_{n}^{\prime}\right)^{2}=4\left\{(-1)^{n}\left(n^{2}-1\right)-P_{n}^{2}\right\} \quad \text { (Simson's formula) } \tag{2.19}
\end{equation*}
$$

To obtain these results, we use (2.12) and (2.13) as well as properties of P_{n} and Q_{n} (1.6). Proof of Simson's formula (2.18) requires much careful calculation though (2.19) follows readily from (2.13) and Simson's formula for P_{n}. One may note en passant that (2.16) is analogous to the well-known relations between P_{n} and Q_{n}, and F_{n} and L_{n} (Fibonacci and Lucas numbers).

Numerical illustrations of (2.14), (2.17), and (2.18) are, by (1.6) and (2.5), respectively,

$$
\begin{array}{ll}
n=5: & 2 P_{4}^{\prime}+P_{3}^{\prime}+2 P_{4}=56+8+24=88=P_{5}^{\prime}, \\
n=5: & Q_{6}^{\prime}+Q_{4}^{\prime}=840+96=936=10 \cdot 82+4 \cdot 29=10 Q_{5}+4 P_{5}, \\
n=5: & \left\{\begin{array}{l}
P_{6}^{\prime} P_{4}^{\prime}-\left(P_{5}\right)^{2}=262 \cdot 28-88^{2}=-408, \\
\frac{8 \cdot 5^{2}(-1)^{5+1}+4(-1)^{5}-Q_{5}^{2}}{16}=\frac{200-4-6724}{16}=\frac{-6528}{16}=-408 .
\end{array}\right.
\end{array}
$$

Analogues of Simson's formulas (2.18) and (2.19) can be obtained for $P_{n}^{\prime}(x)$ and $Q_{n}^{\prime}(x)$.

3. INTEGRATION SEQUENCES

Consider, in a new notation, the integrals [5]

$$
\begin{equation*}
' P_{n}(x)=\int_{0}^{x} P_{n}(s) d s \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
' Q_{n}(x)=\int_{0}^{x} Q_{n}(s) d s \tag{3.2}
\end{equation*}
$$

where the pre-symbol dash represents integration.
Using the summation formulas for $P_{n}(x)$ and $Q_{n}(x)$ [3], we readily obtain

$$
\begin{equation*}
{ }^{\prime} P_{n}(x)=\sum_{m=0}^{\left[\frac{n-1}{2}\right]} \frac{2^{n-2 m-1}}{n-2 m}\binom{n-1-m}{m} x^{n-2 m} \quad(n \geq 1) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{n}(x)=\sum_{m=0}^{\left[\frac{n}{2}\right]} \frac{n 2^{n-2 m}}{(n-m)(n-2 m+1)}\binom{n-m}{m} x^{n-2 m+1} \quad(n \geq 1) . \tag{3.4}
\end{equation*}
$$

From (1.1), (1.2), (3.1), and (3.2), we deduce that

$$
\begin{equation*}
' P_{0}(x)=0, \quad ' Q_{0}(x)=2 x \tag{3.5}
\end{equation*}
$$

Sequences $\left\{{ }^{\prime} P_{n}(x)\right\}$ and $\left\{{ }^{\prime} Q_{n}(x)\right\}$ may be called the Pell integration sequence and the PellLucas integration sequence, respectively. Their first few expressions, obtained from (3.3) and (3.4), are [5]:

$$
\begin{array}{ll}
' P_{1}(x)=x & ' Q_{1}(x)=x^{2} \\
{ }^{\prime} P_{2}(x)=x^{2} & ' Q_{2}(x)=\frac{4}{3} x^{3}+2 x \\
{ }^{\prime} P_{3}(x)=\frac{4}{3} x^{3}+x & ' Q_{3}(x)=2 x^{4}+3 x^{2} \\
{ }^{\prime} P_{4}(x)=2 x^{4}+2 x^{2} & ' Q_{4}(x)=\frac{16}{5} x^{5}+\frac{16}{3} x^{3}+2 x \\
{ }^{\prime} P_{5}(x)=\frac{16}{5} x^{5}+4 x^{3}+x & ' Q_{5}(x)=\frac{16}{3} x^{6}+10 x^{4}+5 x^{2} \tag{3.6}\\
{ }^{\prime} P_{6}(x)=\frac{16}{3} x^{6}+8 x^{4}+3 x^{2} & \prime Q_{6}(x)=\frac{64}{7} x^{7}+\frac{96}{5} x^{5}+12 x^{3}+2 x \\
{ }^{\prime} P_{7}(x)=\frac{64}{7} x^{7}+16 x^{5}+8 x^{3}+x & \prime Q_{7}(x)=16 x^{8}+\frac{112}{3} x^{6}+28 x^{4}+7 x^{2} \\
{ }^{\prime} P_{8}(x)=16 x^{8}+32 x^{6}+20 x^{4}+4 x^{2} & ' Q_{8}(x)=\frac{256}{9} x^{9}+\frac{512}{7} x^{7}+64 x^{5}+\frac{64}{3} x^{3}+2 x .
\end{array}
$$

Putting $x=1$ in (3.6), we obtain the Pell integration sequence numbers $\left\{{ }^{\prime} P_{n}(1)\right\}=\left\{{ }^{\prime} P_{n}\right\}$, and the Pell-Lucas integration sequence numbers $\left\{{ }^{\prime} Q_{n}(1)\right\}=\left\{{ }^{\prime} Q_{n}\right\}$, respectively, of which the first few members are [5]:

n	0	1	2	3	4	5	6	7	8	\cdots
${ }^{\prime} P_{n}$	0	1	1	$\frac{7}{3}$	4	$\frac{41}{5}$	$\frac{49}{3}$	$\frac{239}{7}$	72	\cdots
${ }^{\prime} Q_{n}$	2	1	$\frac{10}{3}$	5	$\frac{158}{15}$	$\frac{61}{3}$	$\frac{1482}{35}$	$\frac{265}{3}$	$\frac{11902}{63}$	\cdots

Two elementary properties of $\left\{{ }^{\prime} P_{n}\right\}$ and $\left\{{ }^{\prime} Q_{n}\right\}$ are

$$
' P_{n}= \begin{cases}\frac{Q_{n}}{2 n} & (n>0, \text { odd }) \tag{3.8}\\ \frac{Q_{n}-2}{2 n} & (n>0, \text { even })\end{cases}
$$

and

$$
' Q_{n}= \begin{cases}\frac{2 n\left(2 P_{n}-1\right)-Q_{n}}{n^{2}-1} & (n>1, \text { odd }) \tag{3.9}\\ \frac{4 n P_{n}-Q_{n}}{n^{2}-1} & (n>1, \text { even })\end{cases}
$$

Proofs of these [5] are lengthy but of a relatively elementary nature and are omitted to conserve space. The procedure is to begin with (3.1), (3.2), then integrate with the aid of (1.3)-(1.5), and eventually set $x=1$, taking into account the values of $P_{n}(0)$ and $Q_{n}(0)$ for n even and n odd.

Complicated Binet forms of ${ }^{\prime} P_{n}(x),{ }^{\prime} Q_{n}(x),{ }^{\prime} P_{n}$, and ' Q_{n} are obtainable on applying the corresponding Binet forms for the undashed symbols from (1.3) and (1.4).

From (3.6) and (3.7), we may obtain

$$
\begin{equation*}
' P_{n+1}+{ }^{\prime} P_{n-1}={ }^{\prime} Q_{n} \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
' P_{n+1}-{ }^{\prime} P_{n-1}=\frac{Q_{n}-Q_{n}}{n} \tag{3.11}
\end{equation*}
$$

Once again, it is worth commenting on the fundamental nature of property (3.10) [cf. (2.16)].
Numerical illustrations of (3.10) and (3.11) are, respectively,

$$
\begin{aligned}
& n=4: \quad{ }^{\prime} P_{5}+{ }^{\prime} P_{3}=\frac{41}{5}+\frac{7}{3}=\frac{158}{15}={ }^{\prime} Q_{4}, \\
& n=6: \quad{ }^{\prime} P_{7}-{ }^{\prime} P_{5}=\frac{239}{7}-\frac{41}{5}=\frac{908}{35}=\frac{198-\frac{1482}{35}}{6}=\frac{Q_{6}-Q_{6}}{6} .
\end{aligned}
$$

The Simson formula analogue for ' P_{n} takes two forms, depending on whether n is odd or even. From (3.8), and invoking the use of Simson's formula for Q_{n}, we obtain

$$
' P_{n+1}^{\prime} P_{n-1}-\left({ }^{\prime} P_{n}\right)^{2}= \begin{cases}\frac{8(-1)^{n+1} n^{2}+4 n^{2}+Q_{n}^{2}-16 n^{2} P_{n}}{4 n^{2}\left(n^{2}-1\right)} & (n \text { odd }) \tag{3.12}\\ \frac{8(-1)^{n+1} n^{2}+Q_{n}^{2}+4\left(n^{2}-1\right)\left(Q_{n}-1\right)}{4 n^{2}\left(n^{2}-1\right)} & (n \text { even }) .\end{cases}
$$

As an example, when $n=5$, both sides of (3.12) equal $-\frac{143}{75}$, whereas, if $n=4$, both sides reduce to $\frac{47}{15}$.

From (3.9), a Simson formula analogue for ' Q_{n} is clearly obtainable but its form is left to the curiosity of the reader. Corresponding analogues also exist for ' $P_{n}(x)$ and ' $Q_{n}(x)$.

To check the consistency of the results, one might establish that ${ }^{\prime}\left(P_{n}^{\prime}(x)\right)=\left({ }^{\prime} P_{n}(x)\right)^{\prime}=P_{n}(x)$ and similarly for $Q_{n}(x)$.

4. CONCLUDING REMARKS

Extensions:

Two observations on the foregoing material are relevant:
(i) clearly, the procedures for obtaining integration and first derivative sequences for Fibonacci and Lucas polynomials as in [1] and [2], and for Pell and Pell-Lucas polynomials as herein, can be made more general to embody multiple integration sequences and $n^{\text {th }}$-order derivative sequences, and
(ii) the ideas delineated here are applicable to the generalized recurrence-generated polynomials for which the coefficient $2 x$ in (1.1) and (1.2) is replaced by $k x$, with appropriate initial conditions.

Simson v Simpson:

Occurrences of analogues to Simson's original formula in 1753 for Fibonacci numbers [4], and the frequent misspellings of Simson's name, prompt us to offer a brief, if only peripherally relevant, historical explanation to clarify the situation. The formula is due to the distinguished Scot, Robert Simson (1687-1768), who was also the author of a highly successful text-book on Euclidean geometry. He is not to be confused with his able contemporary English mathematician, Thomas Simpson (1710-1761), whose name is associated with the rule for approximate quadratures by means of parabolic arcs. Our man is Robert Simson.

REFERENCES

1. P. Filipponi \& A. F. Horadam. "Derivative Sequences of Fibonacci and Lucas Polynomials." Applications of Fibonacci Numbers. Ed. G. E. Bergum, A. N. Philippou, \& A. F. Horadam. 4:99-108. Dordrecht: Kluwer, 1991.
2. A. F. Horadam \& P. Filipponi. "Integration Sequences of Fibonacci and Lucas Polynomials." Applications of Fibonacci Numbers. Ed. G. E. Bergum, A. N. Philippou, \& A. F. Horadam. 5:317-30. Dordrecht: Kluwer, 1993.
3. A. F. Horadam \& Br. J. M. Mahon: "Pell and Pell-Lucas Polynomials." The Fibonacci Quarterly 23.1 (1985):7-20.
4. R. Simson. "An Explanation of an Obscure Passage in Albrecht Girard's Commentary upon Simon Stevin's Works." Philosophical Transactions of the Royal Society 48.1 (1753):36877.
5. B. Swita. Pell Numbers and Pell Polynomials. M.Sc.St. Thesis, The University of New England, Armidale, Australia, 1991.

AMS Classification Numbers: 11B39, 11B83

