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When you break open a new deck of 52 cards you might wonder how many times you would 
have to "perfectly" shuffle the cards to return the deck to its original configuration. Our curiosity 
about this led ultimately to the contents of this paper. By a perfect shuffle here we mean separate 
the cards into two piles of 26 cards each, then reorder the cards by alternately taking a card from 
the first pile then one from the other. We call this a perfect 2-shuffle, which is the same as the out 
Faro shuffle mentioned in [2], [4], [5], [6], and [9]. The answer to the question above is 8, i.e., 
the order of a perfect 2-shuffle on 52 cards is 8. 

As in [4] and [7], we will generalize the idea of a 2-shuffle to that of a ^-shuffle. We will 
then proceed to the main goal of this paper, which is to produce necessary and sufficient condi-
tions under which the order is large in comparison with the number of cards. We will also give a 
lower bound for the order. The results, embodied in Theorems 1, 4, and 6, imply certain proper-
ties of the graph obtained when one plots order versus deck size. This will, in turn, shed light on 
question 5 in [9], which asks for reasons for the appearance of such a graph. See also the figures 
accompanying this paper. In these graphs, it appears as if sets of points line up in straight lines all 
passing through a common point with more irregularly positioned points above or below these 
lines. Our concluding remarks indicate how this behavior and much more can be explained. 
Following these remarks will be found a short description of how we discovered the results 
communicated in this paper. 

Definition 1: Let k and s be integers greater than 1. Take n = ks cards numbered in order 
1 through n. Place the cards in k piles of s each, the first pile containing, in order, cards 1 through 
s, the second pile containing cards s + 1 through 2s, etc., with the last pile containing cards 
(&-l)s + l through ks. Now, in order, pick up the first card in each pile, then the second, etc., 
ending with the last card in each pile. The result we call a "perfect ^-shuffle." The order of this 
^-shuffle, dk(n), will be the minimum number of times the A>shuffle needs to be repeated to return 
the cards to their original configuration. The order of a card will be the minimum number of 
^-shuffles needed to return that card to its original position. 

In [4] Medvedoff and Morrison show that dk(ri) is the order of k (mod(«-1)), i.e., the mini-
mum positive integer r such that kr = 1 (mod(^i-1)). The key to the proof is in demonstrating 
that if the cards are numbered 0 through w-1, rather than 1 through w, then the card numbered 
x^O or n-\, i.e., an interior card, ends up after one perfect ^-shuffle in the position formerly 
occupied by the card numbered he (mod(^-l)). The first and last cards obviously remain 
unchanged. The fact that dk{ri)<n-2 is easily deduced from properties of the Euler ^-function. 
It is also not hard to see that the order of a card divides dk(n) and is the length of the cycle that it 
is in when the ^-shuffle is represented as a member of the permutation group on n objects. It is 
also true that dk(n) is the length of the longest cycle and card 2 will always be in such a cycle. 
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As an example, consider the case k = 3 and 5 = 5. The three piles 
1 12 9 
6 3 14 

become 11 8 5 
2 13 10 

5 10 15 7 4 15 

after one 3-shuffle. The permutation representation is 

(1)(2, 4, 10, 14, 12, 6)(8)(3, 7, 5, 13, 9, 11)(15) 
and d3(\5) = 6. 

We now produce the promised lower bound for dk (n). This lower bound is related to Theo-
rem 2 on page 9 in [4]. 

Theorem 1 If n = k\ then dk(n) = t. Furthermore, if kf < n< kt+l, then dk(n)>t + l. Hence, 
dk(ri) = logk(n) ifn = k{ and dk(n) > logk(n) +1 if k* < n < kt+l. 

Proof: If n = k*, then k* = 1 (mod(n -1)) and &r = 1 (mod(/i -1)) with r < t is not possible 
since Jfcr - 1 < n - 1 . So, dk(n) = t. lfn>k\ then u<t implies ku -l<k* -l<n-l and ku # 1 
(mod(w -1)). Thus, ^(w) > r. Assume dk(n) = t +1 for kf < n < kt+l. Then kt+l -1 = m(>? -1) 
for some m>\. Then kt+l = mks - (m -1), so that k\(m-l),k<m-l,k <m. We also have 

w = + 1< + l = *f + <Ar+l , 
w k k 

a contradiction. Thus, ^(w) > t +1 for kf < n < kt+l. 
The fact that d2(22) = 6 andd3(2l) = 4 shows that dk(n) = t + 2 is possible when kf <n< 

kM. 
Let us now define what we mean by dk(n) being large in comparison with n. 

Definition 2: If dk(n) = n-2, we say that the ^-shuffle is full. If dk(n) > (n-2)/2, we say that 
it is over half full. 

We are interested in circumstances under which the A>shuffle is over half full. The following 
two theorems follow from the fact that dk{n) is the order of A: (mod(w -1)), the proof of that fact, 
and elementary number theoretic ideas. 

Theorem 2: If the ^-shuffle is full, then p = n -1 is prime. 

Theorem 3: If p = n -1 is prime, then all interior cards have order dk(n) = (n - 2) / c, where c is 
the largest positive integer such that c\(n-2) and there is an x such that xc = k (mod/?), i.e., c is 
the largest divisor of n - 2 such that k is a c-residue modulo p. 

The fact that d5(H0) = 27 shows that the converse of Theorem 2 does not hold. On the 
other hand, Theorem 3 is illustrated by the fact that the 108 interior cards appear in four cycles of 
27 each, i.e., each interior card has order 27. Furthermore, 284 = 5 (mod 109) while 5 is not a c-
residue modulo 109 where 4 < c|108. Although 316 = 5 (mod 109), 16 does not divide 108. 
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The fact that d2 (2048) = 11 and 2047 = 23-89 shows that all interior cards can have the same 
order without n-\ being prime. On the other hand, the fact that d2(\0) = 6 and cards 4 and 7 
have order 2 shows that, in general, not all interior cards have the same order. 

Theorems 2 and 3 together yield the following necessary and sufficient conditions for a 
k-shuffle to be foil Recall that a is a primitive root of m if (a, m) = 1 and a is of order <j)(rri) mod-
ulo m, where $ is the Euler ^-function. 

Theorem 4: A perfect ^-shuffle is full, i.e., dk(n) = n-2 if and only if p = n -1 is a prime (odd) 
and & is a primitive root of/?. 

Since d2(20) = 18, for example, 2 must be a primitive root of 19. From Theorem 3, we see 
further that, if p = n - 1 is prime and k is not a primitive root of/?, then dk (n) <{n-2)l2 and the 
i-shuffle is not over half full. 

It is interesting that, for some fc, there can be no full shuffles. Using quadratic reciprocity, we 
can show that, if k = 0 or 1 (mod 4) and n - 1 is prime, then k is a quadratic residue modulo p. 
Thus, Theorems 2 and 3 show lack of fullness. See also Lemma 2 on page 5 of [4]. A computer 
check suggests the conjecture that, if £ = 2 or 3 (mod 4), then there is an n-ks such that 
dk(n) = « - 2 , i.e., k and s are primitive roots of a prime/? = n-1. This is similar to Artin's con-
jecture that, if k is a positive integer that is not a perfect square, then & is a primitive root of 
infinitely many primes (see [8], p. 81). Not surprisingly, we have made no headway in proving or 
disproving our conjecture. We can rule out certain cases. Again, using quadratic reciprocity, we 
can show that, if k = 4j + 2 and 

n -1 = ks-1 = p = ±1 (mod 8) and/ or s is even or 
n-1 = ks-1 = p = ±3 (mod8) and/ and s are odd, 

then k is a quadratic residue modulo/? and thel-shuffle is not full. Examples include 
sf10(80) = 13, rf14(168) = 83, rf14(182) = 45. 

Furthermore, if k = 4 / + 3, w-1 = fo-1 = /?, and s- 4w, the ^-shuffle cannot be full. An exam-
ple is <in(44) = 7. But note that d2(44) = 14, where 203 = 2 (mod 43) and 2 is not a c-residue 
modulo 43 for 3<c|42, is not covered by any of the above cases, all of which employ quadratic 
residues, while this example involves a cubic residue. 

We now turn to necessary and sufficient conditions for which a ^-shuffle is over half full but 
not full. From the preceding, it is clear that n-\ cannot be prime. We can, in fact, say much 
more about necessary conditions. 

Theorem 5: If ^ <dk{ri)<n-2, then n-1 = pa, where/7 is an odd prime and a > 2. 

Before we prove this theorem, we need the following easily verified lemma. 

Lemma 1: If A: is odd and a > 3, then k2 =1 (mod 2a). 

A proof of Theorem 5 is as follows: Suppose n-\-hg-ks-\ with (A, g) = 1. In the case 
in which h, g > 2, we have ^(A), (j){g) even and 

( *»> V ( g ) f '<«> V(h) 

[k2 =l(modg-), U 2 =1 (modA), 
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t(h)Kg) 
k 2 =1 (mod hg) = 1 (mod(n -1)) 

and 
d (jj)^m<!>(g) ^(h-l)(g-l) = hg-h-g + l ^hg-5 = n-6 ^n-2 

k 2 2 2 2 2 2 ' 
In the case h = 2, g > 2, we have £ odd, 

J f c ^ s l f a o d g ) , k*g) = l(modh) **g ) = l(mod%) 
and 

so that 
^(,,)<; 0(g) < — - - = - _ . 

Thus, n-l = pa, where/? is a prime and a>2. Since p-a-2 is impossible, consider /? = 2, 
a > 3. Then « = &s is odd, & is odd, and Lemma 1 shows that 

^ , x na-2 2 a -2"" 1 2 f l - l n-2 
dk(n)<2a 2 = < = . 

* w 2 2 2 
Thus, /? is odd. 

To produce sufficient conditions we utilize a lemma (see [8], pp. 98-99). 
Lemma 2: Let/? be a prime. Then k is a primitive root of p2 if and only if A: is a primitive root of 
pa for all a>\. 

We can now state and prove the theorem we have been aiming for. 

Theorem 6: A perfect ^-shuffle is over half full, but not full, i.e., - ^ <dk(ri)<n- 2, if and only 
if n~ 1 = pa, wherep is an odd prime, a > 2, and A: is a primitive root of p2. 

Proof: Assume n^<dk{n)<n-2. By Theorem 5, n-1 = pa
9 wherep is an odd prime and 

a > 2 is necessary. If k is not a primitive root of p2 then, by Lemma 2, k is not a primitive root of 
pa. Thus, 

., / x j , a ix ( p - 1 ) ^ " 1 P°-Pa~l P * + l - 4 ?2-4 71-2 

Thus, k must be a primitive root of p2. 
Conversely, assume that n-l = pa, where/? is an odd prime and a > 2 and k is a primitive 

root of p2. Then, by Lemma 2, & is a primitive root of pa. Thus, 

^(^) ^ ^(^-hl) = (/>-1)^"1 > (/7_ l)f^-i _ J-̂ 1 = ^^(.p- -1) = ̂ ^1(^-2). 
V PJ P P 

Since p > 3, ̂ — > -| > y, and we are done. 

We can draw the following interesting facts from the proof of Theorem 6. 
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Corollary 1: A ̂ -shuffle is over half full if and only if it is over two-thirds full, i.e., 
n-2 2 

dk (n) > if and only if dk (n) >—(n-2). 

Furthermore, if the conditions of Theorem 6 hold and dk{n) = m{n-2), then m increases to 1 as p 
increases and decreases to — as a increases. 

Before we illustrate Theorem 6, note the following, the proofs of which we leave as a chal-
lenge to the reader. 

Lemma 3: Let/? be prime. If the order of k (mod/?7) = Z>, then the order of k (mod/?y+1) = b or 
bp and in the latter case the order of A: (mod//) = bpr~J for all r > j . 

Lemma 4: Let/? be prime. If pf = 1 (modk) and k\(pJ +1), then k\ptr+J +1 for all r > 0. 

Lemma 4 is useful in generating sequences of ^-shuffles. 
Consider the following six examples, each with a slightly different flavor. Notice the 

relevance of Corollary 1 and Lemmas- 3 and 4. 

(1) The order of 2 (mod 32) = 2-3. Thus, d2(3a +1) = 2-3fl_1. Thus, a 2-shuffle on 3a +1 cards 
is over half foil, over 2/3 full in fact. It is full if a = 1, not Ml if a > 2. As a increases, the 
ratio decreases to 2/3. 

(2) The order of 2 (mod 7) = 3 and the order of 2 (mod 72) = 3-7 * 6-7. Thus, J2(7a +1) = 
3-7fl_1. Thus, a 2-shuffle on 7a +1 cards is half full if a = 1 and less than half full if a > 2. 

(J) The order of 3 (mod 52) = 4-5. Thus, d3(52r+l +1) = 4-52r. Thus, a 3-shuffle on 52r+1 + 1 
cards is over half full, over 4/5 fiill in fact. It is full if r = 0, not full if r > 1. As r increases, 
the ratio decreases to 4/5. 

(^ The order of 3 (mod 11) = 5, the order of 3 (mod 112) = 5 and the order of 3 (mod 113) = 
5-l l*10-l l 2 . Thus, rf3(l 1 +1) = 5 and^3(1 l2r+1 +1) = 5-1 l2r_1 for r > l . Thus, a 3-shuffle 
on 11 + 1 cards if half foil and a 3-shuffle on 1 l2r+1 +1 cards, r > 1, is less than half foil, much 
less. 

(5) The order of 5 (mod 72) = 6-7. Thus, d5(lAr+1 +l) = 6-74r+1 for r >0. Thus, a 5-shuffle on 
74r+2 +1 cards is over half foil, over 6/7 foil in fact, with the ratio decreasing to 6/7 as r 
increases. 

(6) The order of 10 (mod 487) = 486, and the order of 10 (mod 4872) = 486 * 486 • 487. Thus, a 
10-shuffle on 4874r+2 +1 cards where r > 0 is less than half foil, much less. 

Example (6) was found on page 102 in [8] and shows that k a primitive root of p2 in Theorem 6, 
cannot be replaced by k a primitive root of/?. 

Remarks: If one were to graph the function y-dk (n), k a constant, plotting y versus n, every 
time n = p +1, p a prime, by Theorems 3 and 4 the points would lie on one of the lines y -It^-
where c\n-2 and c = 1 when k is a primitive root of/?. See Figure 1 for k = 2 and recall 
examples (1) and (2) above. See Figure 2 for k = 3 and recall examples (3) and (4) above. More 
irregularly positioned points above or below and sometimes on the lines y = - ^ are supplied 
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examples (1) and (2) above. See Figure 2 for k = 3 and recall examples (3) and (4) above. More 
irregularly positioned points above or below and sometimes on the lines y = - ^ are supplied 
when n - 1 is composite. In order for points to lie between y = n - 2 and y = 2?=2-, n would have 
to be a / + 1 with/? an odd prime, a > 2, and k a primitive root of p2. This is rare and, in fact, 
sometimes cannot happen, for example, when k is a perfect square. See Figure 3 for k - 4. 
Clearly, no point can be above y-n-2. If A; = 0 or 1 (mod 4), no point will lie on y-n-2. 
See Figure 3 again for k - 4. See Figure 4 for k = 5 and recall example (5) above. In Figure 1 
those points above y = - ^ are all above y = ^(n-2) and those near y-n-2 are due to large p. 
In Figure 2 those points above y = - ^ are all above y = j(n-2). In Figure 3 those points just 
below y-1^- are all above y-12^-. In Figure 4 those points above y-12^ a r e a^ above 
y = l(ri-2) and those near y-n-2 are due to large/?. By Theorem 1 all points are on or 
above y-\ogk{n). 

We thus have at least a partial explanation for the appearance of the graph in Figure 1 ([9], p. 
145) which is for in-shuffles with k - 2 but is similar to a graph for out-shuffles talked about in 
this paper. Since the order of an in-shuffle on n cards is the order oik (mod(/i + 1)) as opposed 
to the order oik (mod(?i - 1)) for the order of an out-shuffle on n cards (see [4], p. 6), the lines in 
Figure 1 ([9], p. 145) arej = nlc. In fact that graph is just a translation of the graph in Figure 1 of 
this paper. 
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DISCOVERY 

After our initial curiosity was aroused, we wrote out a few shuffle permutations by hand for 
small n. It was not long before we had discovered and proved correct the formula for dk(n). It 
was a shock to later see this as Proposition 1 in [4]. A simple program in BASIC produced print-
outs of dk(n) using a PC. When we saw what ideas seemed to play significant rules, modifica-
tions in the program checked n-\ for being prime, dk(n) for being n-2, and dk(n) for dividing 
n-2. Essentially every result in this paper represents the successful justification of conjectures 
suggested by the printouts. Early success with techniques from elementary number theory 
prompted us to continue in that direction. 
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