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Consider the homogeneous linear recurrence relation 
Gn+2=aGn+l+Gn (n = 0,±l,±2,...) (1) 

where a is a nonzero real or complex constant. The equation is especially familiar in relation to 
the theory of simple continued fractions, and in relation to the theory of numbers when a is a 
natural integer. (For the case where a is a Gaussian integer, see Good [4] and [5].) A solution 
(Gn) can be regarded as a vector of a countably infinite number of components or elements, and 
which is completely determined "in both directions" by any two consecutive components. The 
general solution is a linear combination of any pair of linearly independent solutions. Two solu-
tions are linearly independent under the nonvanishing of the 2-by-2 determinant consisting of two 
consecutive elements of one solution and the corresponding two elements of the other solution. 
Perhaps the simplest pair of independent solutions is given by 

F„=F„(® = ^_z]f_y Ln = LM = Z" + *ln (» = 0,±1,±2,...) (2) 

where 
a W a 2 + 4 a - V a 2 + 4 

£ = " , 1 = ~ (a±2i). (3) 

Note that |£|>|?7| when a is real and positive; also that £,- r}~i if a- 2/, and then Fn = Fn(i) 
must be defined as nin~l while Ln{i) -2in. The numbers £and rj are the roots of the quadratic 
equation 

x2 -ax-1 = 0, (4) 

and, of course, 
%+?] = a, £77 = - 1 . (5) 

In particular, when a = 1, in which case £ is the golden ratio, Fn andZ„ reduce to the Fibonacci 
and Lucas numbers. We write the general solution of (1) as 

G„ = G„($ = AF„(Z) + vLn& (6) 

where X and ju are not necessarily real. 
We shall prove the following symmetry property: 

Theorem: We have 

r y (-0" = r y (-1)" m 

n n+m 

where k and m are nonnegative integers, and where we assume further that all the numbers 
Gj, G2,..., Gm+k are nonzero. 
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Comment (i): It follows from equations (2) and (3) that the nonzero condition is certainly true 
when a is real and (Gn) is either (Fn) or (Zw), that is, when X = 1 and /i = 0 o r when 2 = 0 and 
ju = l. 

Comment (ii): The theorem is presumably new even when (Gw) reduces to the ordinary Fibo-
nacci or Lucas sequence, that is, when a-I and A = l,// = 0o rA = 0, // = 1. 

Comment (Hi): If empty sums are regarded as vanishing, the theorem is true but uninformative 
when k or m is zero. It is also uninformative when k = rn. 

Comment (iv): Even in the simple case Fn = nin~l, Ln =2in, the identity (7) is not entirely 
obvious when Gn is defined by (6). 

Corollary: When | £ | > | r/ | we have 

^ S T T T ; — = / 9 X ~pr- (8) 

Comment (v): In the very special case a = l,k = l,ju = 0, (8) reduces to formula (102) of Vajda 
[8]; and when a = 1, k = 2, ju = 0, the evaluation of the left side of (8) was proposed as a problem 
by Clark [2]. The right side of (8) solves a much more general problem. 

Proof of the Theorem: Without loss of generality, we assume m>k. The proof depends on 
a double induction, beginning with an induction with respect to m. We first note that the result is 
obvious when m = k, so we can proceed at once to the body of the induction. For this we need to 
show that 

k 

Z (-i)" ( F , F ^ 
% G„ 

m+l 

c c 
V w+»+l ^m+n J 

m+l : i-\riFk k 

^m+Y^m+k+l 
(9) 

Now, by means of some straightforward algebra it can be shown from (2), and generalizing 
the case h = 1 of formulas (19b) and (20a) of Vajda [8], that 

rm+V m+n ~^m^m+n+l ~ ( V ^n \^J 
and that 

^m+l^m+n ~^m^m+n+l = (~~V A i V**/ 
and hence that 

Fm+lGm+n ~ FmGm+n+l = (~lT Gn- 0 2 ) 

Therefore, (9) is equivalent to the identity 

y (~ir = — £ — . (is) 
n=\ ^m+n^m+n+l ^m+l^m+k+l 

To prove this identity, we perform an induction, this time with respect to k, noting first that it is 
trivially true when k = 1. So we now want to prove that 

(-1) + _ ~Fk+i , _Fk / 1 4 N 

Gm+k+lGm+k+2 Gm+lGm+k+2 Gm+lGm+k+l 
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that is, we want 
Fk+iGm+k+i~Fk(^m+k+2 = ( _ 1 ) Gm+l. (15) 

But this identity is equivalent to 12) with a change of notation in the subscripts. Hence, in turn, 
we have proved (14), (13), (9), and (7), the statement of the theorem. 

We could reverse the steps of the argument to prove each statement in turn, but the order 
used here shows the motivation at each step and also shows the way that the proof was dis-
covered. It is more difficult to describe, or even to recall, how the theorem itself was discovered 
except that naturally it depended in part on guesswork and on numerical experimentation. (Many 
nonmathematicians don't know that pure mathematics is an experimental science.) For an 
alternative proof, see the Appendix. 

Corresponding Trigonometrical Identities 

Corresponding to many identities involving ordinary Fibonacci and Lucas numbers, there are 
"parental" (more general) identities obtained by replacing the golden ratio, and minus its recipro-
cal, by £ and by TJ = - 1 / g, respectively. (See Lucas [7] and [3].) Our theorem and corollary 
have exemplified this procedure. We can then come down to "siblingal" formulas by giving £ 
special values. As mentioned earlier, the results are number theoretic when £+77 is a natural or 
Gaussian integer. But if we let £ = ielx, r\ = ie~lx, where x is real, we obtain trigonometrical iden-
tities (Lucas [7]), for in this case we have 

Fn{ieix) = in-1 sinwx/sinx (16) 

when x is not a multiple of n, and 

L„(ieix) = 2inco$nx. (17) 

The trigonometrical "siblings," so to speak, of the "Fibonacci" and "Lucas" cases of (7) are 
m k 

sin Ax^cosecwx cosec(/i + k)x - sinmx^cosec/ix cosQc(n + m)x (18) 

and 
m k 

sinAx^secwxsec(w + A:)x = sin/wx^sec«xsec(« + /w)x (19) 
w=l n=l 

where k and m are positive integers and k, m, and x are such that no infinities occur. No infinite 
terms will occur if x is not a rational multiple of n but the series on the left and the sequence on 
the right won't converge when w -> 00 because arbitrarily large terms will occur. (The summa-
tions, for finite k and m, can be numerically highly ill-conditioned.) 

"Parents" and trigonometrical "siblings" can be written down corresponding to the vast 
majority of the identities on pages 176-183 of Vajda [8] where Vs is to be generalized to £-77. 
Some of these trigonometrical identities are familiar. Conversely, parents and Fibonaccian sib-
lings can be obtained for many of the trigonometrical identities in, say, Hobson [6]. To carry out 
this program in detail would be straightforward but would occupy a lot of space. 

Again, trigonometrical identities can be derived from identities given by Bruckman and Good 
[1], in addition to the Fibonaccian identities given there. 
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APPENDIX 

L. A. G. Dresel, on trying out the reverse argument, found the following more direct way of 
proving the identity (7). 

On putting m = t - 1 in (12) and dividing by G/7G„+r_1G/7+r 3 we have 

"' F - - ( - ' ) M -. (A!) 
^rfon+t ^n^n+t-l &n+fin+t-l 

Summing for t = 1 to k, we find that almost all of the terms on the left cancel in pairs, and since 
F0 = 0 we have 

Fk =i^~^- (A.2) 

[This is the same as (13), with a change of notation in the subscripts, but is now proved.] 
Multiplying by (-1)" and summing for n = 1 to m gives 

m ('—XV1 m k (—X\n+t~^ 

n=\ ^n^n+k n=\ t=\ Un+tUn+t-\ 

Similarly, interchanging the roles of £ and m, we have 
k / -i\w k m / - i \ « + r - l 

^.S7^- = ZI^r— (A4) 

But the double summations on the right of (A.3) and (A.4) are equal, as the summand is symme-
trica! in n and t and the order of summation is immaterial. Hence the left sides are equal, which 
proves the theorem. 
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