
ROOTS OF SEQUENCES UNDER CONVOLUTIONS 

Pentti Haukkanen 
Department of Mathematical Sciences, University of Tampere 

P.O. Box 607, SF-33101 Tampere, Finland 
(Submitted February 1993) 

1. INTRODUCTION 

The usual convolution of the sequences {rn} and {sn} is defined to be the sequence {tn} given 
by tn — E/Lo ris

n-i (n>0). The usual convolution comes out naturally from the product of the 
generating functions of the sequences {rn} and {sj: 

f oo \f oo \ oo 

\n=0 J\n=0 J n=0 

This "usual" convolution is also called the Cauchy product. We define the k^ power {r^k)} of 
the sequence {rn} under the usual convolution as follows: 

r^=r„; r « = £ r , i & - ' > ( * * 2 ) . 

In other words, /f} = I,il+...+ik=nriri2 •••^. 
Using the terminology of [6], the kih power under the usual convolution is the (k - l)th iterated 
convolution. 

The binomial convolution ([2], §7.6) of the sequences {rn} and {sn} is defined to be the se-
quence {un} given by 

This convolution arises from the product of the exponential generating functions. Namely, 

0 0 vn \ 

„=o » ! J 
1 °° x" 

U o w!, 

\ °° v" =X»A ' «=i » ! 

We define the k^ power {r^1} under the binomial convolution of {rn} naturally as follows: 

7 = 0 V S 

Thus, 

Z. U II t I I h Kr
h

 rik La U\U"-iJhl1 k° 
i\+--+'k=n ix+ — +ik=n f l - f 2 - lk' 

In this paper we shall study solutions of the equations {r^} = {sn} and {rj,k]} = {$„} in {rw}, 
where {sn} is a fixed sequence (see Sections 2 and 3). The solutions can be referred to as the k^ 
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roots of {sn} under the usual and the binomial convolution, respectively. In Section 4, roots of 
sequences under a general weighted convolution are briefly considered. 

If sn = 0 for all n, then rn = 0 for all n is the only solution for the equations. Therefore, we 
may confine ourselves to sequences {sn} such that sn & 0 for some n. The least n with sn ^ 0 will 
be denoted by x(s

n) • 
Since an arithmetic function f{ri) is uniquely determined by the corresponding sequence 

{/(I), /(2),/(3), . . .}, it follows that the study of the roots of sequences considered here is 
similar to the study of rdots of arithmetic functions already made in papers [1] and [7] under 
Dirichlet convolution and in paper [3] under "exponential Narkiewicz" convolution. In [4], roots 
of arithmetic functions under a generalized Dirichlet convolution are studied. 

2. ROOTS OF SEQUENCES UNDER THE USUAL CONVOLUTION 

Theorem 1: Let {sn} be a given sequence such that sn ^ 0 for some n. Then the equation 
{r^} = {$„} has a solution in {rn} if and only if x(s

n) ls ^ e ** multiple of a nonnegative 
integer. In this case the equation has exactly k solutions, which can be written as 

ft} = WU, * = 1, .»,*, 0) 
where {pn} is one solution and wly...,wk axe the k^ roots of unity. 

Proof: If {r^k)} = {sn} has a solution, then kx(rn) = x(s
n)> hence x(sn) 'ls ^ ^th multiple 

of a nonnegative integer. Conversely, suppose that x(sn) = ^ ^OT s o m e nonnegative integer m. 
Then the solutions of ft(A:)} = {sn} can be found as follows. Since r^k) = 0 for n < km, we have 
rn - 0 forn<m. Further, rj^ = (rm)k; hence rm = {skm)llk. Finally, the values rm+n (n> 1) can be 
found inductively by using the equations rj^+n - skm+n (n>\), whereby it can also be verified that 
(1) holds. This completes the proof. 

For certain sequences {$„}, the use of generating functions is a very helpful method of 
solving the equation ft(A:)} = {sn}. Namely, if r(x) and s(x) denote the generating functions of 
{rn} and {$n}, respectively, then r(x)k = s(x), and hence r(x) - s{x)xlk. 

We shall illustrate this method in the following examples. For background information on 
generating functions we refer to [2], [5], and [8]. 

Example 1: Consider the equation ft(^} = {a"}, where a is a constant. Then r(x) = (l-ax)~l/k 

and therefore one solution for the equation is 

Pn=(-v[~^ky-
All solutions can be found by (1). Note that for each integer m, p^ = (-i)n{~m„/k)an. This can be 
referred to as an {ml k)^ power of the sequence {a"} under the usual convolution. 

Example 2: Consider the equation ft(*}} = ft}, where {sn} is the usual convolution of the 
sequences {an} and {bn} with a and h constants. Then r(x) = (l-axyl/k(l-hxy1/k and there-
fore one solution for the equation is 

p,=Hri(TX«-?}v~ 
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All solutions can be found by (1). With a - (1 + 45)/2? b = ( 1 - i/5)/2? this gives the solutions 
for the equation {r^k)} = {Fn+l}. Also note that 

^=(-D"z(-w/*)(-^)»'ft , M 

gives an {ml k)^ power of {sn} under the usual convolution. 

Example 3: Let a, b, and c be constants, and {fin} the sequence defined by fi0 = 1, jux - - 1 , 
fin=0 (n>2). Then {fin} is the inverse of the sequence =1, and the sequence {juncn} is the 
inverse of the sequence {cn}. Consider the equation {r^} = {sn}9 where {sn} is the usual 
convolution of the three sequences {a"}, {bn}, and {fincn}. Then 

r{x) = (1 - axyllk (1 - bxyyk (1 - cxfk. 

Therefore, one solution is the usual convolution of the three sequences 
f\lk 

That is, one solution is given by 

\c" 

/1+Z9+/•»=« 

All solutions can be found by (1). With a = (1 + V5) /2, b = (1 - Vs) /2, c = 1 /2 , we obtain the 
solutions of the equation { r^} = {Zw 12). Further, multiplying these solutions by 2Vk we obtain 
the solutions for the equation {r^} - {Ln}. 

Example 4: Since x(Fn) = 1, we see by Theorem 1 that the equation {r^} - {Fn} does not have 
a solution, except for the trivial case k=\. 

3. ROOTS OF SEQUENCES UNDER THE BINOMIAL CONVOLUTION 

Theorem 2: Let {sn} be a given sequence such that sn ^ 0 for some n. Then the equation 
{r^} = {,sw} has a solution in {rw} if and only if x(s

n) *s the k^ multiple of a nonnegative inte-
ger. In this case the equation has exactly k solutions, which can be written as 

W = K A J , *' = I, ...,*,• (2) 
where {pn} is one solution and wu...,wk are the k^ roots of unity. 

Theorem 2 is similar to Theorem 1 in character. Also, Theorem 2 can be proved in a similar 
way to Theorem 1 and therefore we omit the proof. 

The use of exponential generating functions is a helpful method of solving certain equations 
irnk]} = is

n}- The following examples will illustrate this method. Here rE(x) denotes the expo-
nential generating function of {rn}. 

Example 5: Consider the equation {r^} = {a"}. Then rE(x) - e^^ and therefore one solution 
is given by pn = {al k)n. All solutions can be found by (2). 
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Example 6: Consider the equation {rj; ]} = {(n + l)an). Then rE(x) = (l + axy/lceax/lc and there-
fore one solution is the binomial convolution of the sequences 

All solutions can be found by (2). 

4. A GENERALIZATION 

The general weighted convolution of the sequences {r„} and {s„} is defined by 

7=0 

where the weight function / ( « , i) is defined for w > 0 and 0 < / < n. If the weight function satis-
fies the condition 

/ ( « , 0f(h j) = / ( « , 7 ) / ( » - 7 , ' - J) (3) 

for all n, i, j with 0 < / < n, 0 < j < /, then the weighted convolution is associative and we could 
define powers of sequences under this convolution. We could also consider roots of sequences, 
and assuming f(n, i) & 0 for all n and 0 < / <n we could verify that the result of Theorems 1 and 
2 also holds with respect to the weighted convolution. We omit the details. 

It is easy to see that both the usual and the binomial convolution are special cases of the 
weighted convolution satisfying (3). 
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